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Abstract: Model-based diagnosis of embedded systems relies on the ability to
estimate their hybrid state from noisy observations. This task is especially
challenging for systems with many state variables and autonomous transitions.
We propose a fair sampling algorithm that combines Rao-Blackwellised particle
filters with a multi-modal Gaussian representation. In order to handle autonomous
transitions, we let the continuous state estimates contribute to the proposal
distribution in the particle filter. The algorithm outperforms purely simulational
particle filters and provides unification of particle filters with hybrid hidden

Markov model (HMM) observers.
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1. INTRODUCTION

Embedded systems abound in many real-world

applications, ranging from space probes (Muscettola

et al., 1998) and life support chambers (Hofbaur
and Williams, 2002) to walking robots (Pratt et
al., 1997). These systems exhibit both continous
and discrete behavior and tightly interact with
their surrounding environment through contin-
uous dynamics. Therefore, they are well fit for
hybrid modeling.

Within the model-based diagnosis community, it
is often desirable to estimate the state of hy-
brid systems from a sequence of noisy observa-
tions. This task is crucial for diagnosing sub-
tle faults that exhibit themselves only over a

1 Supported by NASA under contract NAG2-1388.

lengthy period of time. A challenge is that real-
world systems, such as the BIO-Plex Test Com-
plex at NASA Johnson Space Center (Hofbaur
and Williams, 2002) have as many as 10,000,000
modes and 20 continuous variables. At the same
time, the systems exhibit non-linear dynamics and
autonomous transitions triggered by the continu-
ous dynamics. The sheer size and complexity of
these systems make the hybrid state estimation
problem very challenging.

In recent years, particle filtering methods have
been on the rise (Verma et al., 2001; Dearden and
Clancy, 2002; Koutsoukos et al., 2002). Particle
filters approximate the posterior distribution with
a set of samples that simulate the probabilistic
model of the system. Thus, they are applicable
to a range of general, non-Gaussian, non-linear
models. However, with a few exceptions, these



methods are purely simulational in the sense that
they sample the complete state space. Hence, for
large systems, the sample size is too large to be
practical.

On the other side of the spectrum stand the multi-
modal filtering methods, which represent the be-
lief state as a mixture of Gaussians, e.g. (Li and
Bar-Shalom, 1996; Hanlon and Maybeck, 2000;
Lerner et al., 2000; Hofbaur and Williams, 2002).
Their Gaussian representation and focused search
provide an efficient solution to high-dimensional
problems. At the same time, non-linearities and
merging can introduce significant bias in the esti-
mate.

Clearly, there has been a gap between these
two methods: on one end are statistically robust
sampling algorithms and on the other, analyti-
cal representation algorithms that scale. Freitas
(2002) explored this gap in a Rao-Blackwellised
particle filtering algorithm. By disallowing au-
tonomous transitions, he was able to decouple
the discrete and continuous state and only sample
the modes. Yet, autonomous transitions are per-
vasive in many areas, including rocket propulsion
(Koutsoukos et al., 2002) and biological systems
(Hofbaur and Williams, 2002). In our previous
work, we have addressed autonomous transitions
by interpreting multiple-model filtering and Al-
based search methods in terms of hybrid HMM-
style prediction and update equations. However,
we have not addressed the issues of sampling.

The key contribution of this paper is a multi-
modal sampling algorithm for hybrid estimation
in the presence of autonomous mode transitions.
The algorithm samples mode trajectories and, for
each trajectory, estimates the continuous state
with a Kalman Filter. Hence, it can also be viewed
as a specialization of Rao-Blackwellised particle
filtering (Murphy and Russell, 2001) with further
approximations. The key insight to handling au-
tonomous transitions is that continuous estimates
are reused in the importance sampling step of the
particle filter. The algorithm is thus substantially
more efficient than purely simulational particle
filters. It provides an elegant unification of particle
filtering with multiple-model filtering and hybrid
Markov observers.

2. HYBRID SYSTEM MODELING
2.1 FExzample: Acrobatic Robot

Consider the following model of an acrobatic
robot with two degrees of freedom, swinging on a
high bar (see Figure 1). The robot has two links —
the torso and the legs — with point masses mj and
ms at their ends. The dynamic model for this sys-
tem has four continuous variables 61, 91, 0o, 92 and

Fig. 1. Acrobatic robot with 2 degrees of freedom.

a discrete mode x4. If we let x. = [0y, 91, 05, 92],
its evolution can be expressed as

%= [01, f1(01,61,09,02, T1; 24),
0o, f2(01,601, 09,02, Tr;20)] +ve (1)

where f; and fo are non-linear functions (Paul,
1982), Ty is the desired torque, and v, is the
model uncertainty. The system is underactuated:
in order to move, the robot can only apply torque
around its center mass.

The system can be in four modes, mg ok, M1, 0k,
Mo, failed, a0d M1, failed, Tepresenting whether or
not the robot holds a ball, which increases mso,
and whether or not the actuator has failed. The
actuator can fail at all times when torque is
exerted with low probability. Furthermore, if the
robot is far to the right (6, > 0.7), it captures
a ball with probability 0.01 in each time step.
If the robot holds a ball and 6; < 0.7, it will
lose the ball with probability 0.01 in each time
step. Clearly, capturing a ball is an example of
an autonomous mode transition: the transition
probabilities depend on the continuous state (see
Figure 2).

2.2 Probabilistic Hybrid Automata

Formally, the system can be described as a Prob-
abilistic Hybrid Automaton (PHA), a formalism
merging hidden Markov models (HMM) with con-
tinuous dynamical system models (Hofbaur and
Williams, 2002). It is a tuple (x, w, F, T, Xgq,Ug, Ts):

e x denotes the hybrid state of the automaton,
composed of variables {xs} Ux..? The dis-
crete variable x4 with finite domain Xy rep-
resents the operational mode of the system,
while the continuous vector x,. € R"= denotes
the continuous state. The initial state proba-
bility p(x0) is assumed to be known and the
conditional state distribution for each mode
p(Xe0lxa,0) is Gaussian.

2 When clear from the context, we use lowercase bold
symbols, such as v, to denote a set of variables {v1,...,v;},
as well as a vector [v1,...,v]T with components v;.



Fig. 2. Conditional dependencies among the state
variables x., x4 and the output y. expressed
as a Dynamic Bayesian Network. The edge
from x.+—1 to x4 represents the dependence
of x4+ on X.+—1, i.e., autonomous transitions.

e w =uyUu.Uy,. denotes the set of I/0 vari-
ables, consisting of disjoint sets of discrete
input variables uy € Uy, continuous input
variables u. € R"*, and continuous output
variables y. € R"v.

e The discrete transition function T : Uz X
R™ x Xy x R™ — 7T specifies, for each
possible assignment of variables ug, u., 4,
and x. at time step t—1, a distribution 7 € 7
over the modes at the next time step. T is
described by a finite set of pairs {(,¢)} of
transition distributions 7 : X3 — [0;1] and
guard conditions c that cover distinct regions
of the Uy x R™ x Xy x R™ space.

o F: Xy — {{f,g,vs,vy)} specifies the con-
tinuous evolution of the automaton for each
mode x4 € X, in terms of the transition
function f, observation function g, and mode-
dependent zero-mean white Gaussian noise
vy (zq) and vy (zq):

Xet =F(Xep—1,Uet—1;Tae) + Va(zae) (2)

Vet =8(Xet, Uet; Td ) + Vy(Ta,t) (3)

Larger systems can be modeled as a composition
of multiple PHAs (Hofbaur and Williams, 2002).

2.3 Hybrid Markov Observer

Multi-modal Gaussian filtering encompasses a
wide family of methods for hybrid estimation,
including Multiple-Model (MM) estimation, adap-
tive MM estimation, and more recent Al-based
methods. The common premise of these methods
is that they represent the belief state as a mixture
of Gaussians and they use a bank of Kalman Fil-
ters to evolve the continuous state. The algorithms
vary in how they choose which mode trajectories
to expand (qualitatively or quantitatively) and
how they merge continuous state estimates.

The contribution of Hofbaur and Williams (2002)
was to interpret these algorithms in terms of
HMM-style hybrid belief-state update equations.

For example, they define their beam search algo-
rithm in terms of prediction and update equations

het[Xi] = Pr(m;|Xjt—1,0qt—1)he—1[%X5]  (4)
x| het[Xi t|Po(Ye,t|Xit)
M= S b Po e )

In these equations, he:[%X;] denotes an intermedi-
ate hybrid belief-state that is based on transition
probabilities only. Hybrid estimation determines
the possible transitions for each X;:_1 at the
previous time step, thus specifying candidate tra-
jectories to be tracked by the filter bank. Kalman
filtering then provides the new hybrid state %; ;.
Finally, the intermediate belief state is adjusted
using the observation function Pp.

3. PARTICLE FILTERING: REVIEW

Particle filters belong to the family of Monte Carlo
simulation-based methods and are applicable to a
range of domains. Given a discrete-time hybrid
system (e.g. a PHA), particle filters approximate
the posterior of the hybrid state x; with a set
of sample trajectories {x((fl} The trajectories are
traced sequentially and drawn from the posterior
distribution p(xo.¢|y1:¢).> They approximate the
posterior in the sense that the posterior probabil-
ity over a sufficiently large region A C Xy x R"=
is approximated by the number of samples in it:

1 i
Pl € Alyi) ~ i sx” € A (6)

Particle filtering algorithms typically involve three
steps, as shown in Figure 3. The algorithm starts
by drawing samples from the initial distribution
p(Xo); thus, effectively approximating the poste-
rior at t = 0. Then, in each iteration, we evolve

the hybrid trajectories by taking one random

sample X; for each trajectory X&q according

to a so-called proposal distribution and compute
the importance weights (step 2). In its simplest
form, the proposal distribution is just the tran-
sition distribution p(x¢|x;—1). This step, called
importance sampling, is then entirely analogous to
the prediction-update sequence in other filtering
methods: first, we predict the hybrid state Z; using
the estimate at the previous time step and then
we adjust the prediction using the newest obser-
vation. The final selection step simply multiplies
the “good” particles and removes the “bad” ones,
so that in the next time step, the high-likelihood
particles contribute more to the sampling process.
Otherwise, most particles would have zero weight
after a few iterations due to the accumulated

3 We wuse the notation wvg; to denote the tuple
<Ukvvk+17"'7vl>'
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Fig. 3. The three steps of a particle filter: Ini-
tialization (1), Importance sampling (2), and
Selection (3). The illustrated system has two
modes and one continuous variable.

errors in their predictions, and the filter would
not, converge to the posterior.

Particle filters are conceptually simple, yet of-
fer interesting generalizations of the ideas pre-
sented above. First, the particles approximate
not only the posterior over the present state
X¢, but also over the space of complete trajecto-
ries traced by the state transitions, albeit with
less precision. Furthermore, in principle, the pro-
posal distribution can be an arbitrary function
q(x¢;x\)_,y1), not only the transition distri-
bution p(xt|x§21). For example, the proposal dis-
tribution can directly incorporate present obser-
vations and thus, make more precise predictions.
It has been shown that as long as the support of
q includes the support Ofp(Xt|X0t 1,¥1:+) and we
let the weights

o pEIERS, y1e-1)pER RSy y1-1)
t ~ (3 )
Q(Xt;x(():i—h)’l:t)
(7)

the particle filter converges to the true posterior
in the limit. See (Doucet et al., 2001) for a com-
prehensive review of particle filters and derivation
of the results above.

4. MULTI-MODAL PARTICLE FILTERING

Our algorithm combines particle filtering with
a multi-modal Gaussian representation. It still
performs particle filtering, but reduces the di-
mensionality of the sampled space by applying
the method of Rao-Blackwellised particle filters
(Murphy and Russell, 2001): If we divide the
state variables into two sets, the root (sampled)
variables r and leaf variables s, we can express
the posterior distribution of x as

p(xc|x£12):2’ yc,l:2)

(@)
PZ

Fig. 4. Representation in the multi-modal particle
filter. Note that the trajectory mor — my
was duplicated in the selection step at ¢t = 1.

(1) Initialization
e sample 1:51)0 ~p(xao),i=1,...,N

¢ KF initlahzatlo_n for i = 1,..., N, let

EZ)O = E[xc,0|x£ﬁ)] and PO(Z) = A

(2) Importance sampling step
e fort =1,...,N, compute the proposal

()
xe,01Tq 0

dlstrlbutlonp ZTq t|xd0t 1,y01t 1)

e sample xfl)t ~ p(mdt|$d0t 1 Yel:t-1)

and set xdz)t (Id)ot 1755((112:)

e evaluate the importance weights wf)

e normalize the importance weights
(3) Selection step
° resample (with replacement) N particles

from {xd 0.} according to w; @ to ob-
tain samples {x d,o:t} distributed approx-
imately according to p(w&i%:t|yc71;t).
(4) Exact step
e for ¢ = 1,...,N, update )“cg and
Pt(i) with an EKF using f(-, uc—1; x&z)t),
. (8
g(, Ue,t; zd,t)’ Avm(lg,)t)7 and Avy(lg,)t
e let t +— t+ 1 and go to step 2
Fig. 5. Multi-modal particle filter for PHA state
estimation.

:p(st, I‘t|}’1:t)
:/P(St71‘0:t|Y1:t)dI‘0;t—1

= /p(st|r0:t; V1:6)P(To:t|y1:6)dro.c—{8)

p(xely1:t)

Thus, we expand the posterior in terms of the
root trajectory rg.; and leaf s; conditioned on the
trajectory (typically, the leaf variables s would be
descendants of the roots r in a DBN structure,
hence the root-leaf analogy). The key to this for-
mulation is that if we can compute p(s¢|ro., ¥1:¢)
analytically, we only need to sample the root vari-
ables r. In this manner, fewer particles are needed
to cover the posterior.

In the spirit of the beam search algorithm of Hof-
baur and Williams (2002), we sample the mode
trajectories and, conditioned on these trajectories,
compute the posterior of the continuous variables
analytically (see Figure 4). This partition reveals



significant structure: given a sampled trajectory
xfj;)():t, the transition and observation distributions
are known. The distribution p(xc,t|x$)0:t,y1;t) is
then approximately Gaussian? and can be effi-

ciently updated with a Kalman Filter.

The resulting multi-modal particle filtering algo-
rithm is shown in Figure 5. Each particle now
holds not only a sample trajectory 931(11,)0::5 drawn
approximately from the posterior dist(rj)bution of
K3
t

24,0+ but also the estimated mean X.; and co-

variance matrix Pt(z) of P(Xc,t|$£;)0:t, ¥e1:t). There
is also an additional Kalman Fﬂtering step that
updates f{ff% and Pt(i) for each particle 7 based on
the transition and observation equations associ-

ated with the latest mode 955111

As before, the algorithm starts by initializing the
particles, albeit only the modes are sampled. The
algorithm then proceeds to expand each trajec-
tory ¢ probabilistically by taking one random sam-
ple from the corresponding proposal distribution.
After we compute the importance weights, we re-
sample the trajectories according to their weights,
so as to direct their future expansion into relevant
regions of the trajectory space.

The proposal distribution p(fl?d,t|$,(j7)02t_1,)’1:t71)
is similar in its form to the transition distribu-
tion p(x¢|x:—1) in Markov processes. However, it
is conditioned on a complete trajectory and all
previous observations, rather than simply on the
previous state. This is because {z4 .} alone is not
an HMM process: due to the autonomous transi-
tions, knowing x4,;—1 alone does not tell us what
the distribution of x4, is. The distribution of x4
is known only when conditioned on the mode and
continuous state in the previous time step (see
Figure 2).

This observation suggests that in order to com-
pute the proposal distribution, we need to expand
it in terms of the previous estimates:

P($d7t|xl(f,)o;t—1a Yeit—1)
= / p(ﬂid,t|$,(1i)0;t_1, Ye1:t—1, Xc,tfl) :
Xe,t—1
p(xcytfl |1'¢(11,)0;t_17 YC,lztfl)ch,t—l

= / p(@alel) 1 Xer1) -
Xe,t—1

p(xcytfl |z£li});t717 YC,lztfl)ch,tfl

= Z T(xd,t)P(c(Xc,t—l)|mgi)0:t717yc,lzt—l)(9)
(1,c)€T

4 More precisely, p(Xe,t |m[(;;2):t, y1:¢) is Gaussian if and only
if all f and g along the trajectory are linear and there are
no autonomous transitions.

Here, the first equality follows from the total
probability theorem. The second equality comes
from the independence assumption made in the
model (Figure 2). The third, final equality holds
because the mode distribution 7 is the same for all
values of x.:—1 that satisfy its associated guard
condition c. Only the guard conditions that apply
to inputs ug—1 and u.¢—1 are considered.

The final term in equation 9 is the probabil-
ity that a guard condition is satisfied, given
the trajectory and observations to time ¢ — 1.
But then, x;_; is distributed (approximately) as
N ()Acg,)f_l,Pt(i)l), so the final term is simply an
integral over a Gaussian multivariate distribution
with mean 5(21)5_1 and covariance Pt(i)l. Depending
on the form of the guard condition, this prob-
ability can be evaluated more or less efficiently.
For (hyper)rectangular regions, efficient approx-
imations exist (Joe, 1995), and convex (possibly
unbounded) regions can be reduced to rectangular
ones with a linear transform. For other cases, one
can always fall back to Monte Carlo simulations.

Given our choice of the proposal distribution, the
(4)

weight @; ’ in equation 7 simplifies to
'ngl) - p(YC,t|yc,1:t71; 1'1(;,)015) (10)

Unfortunately, equation 10 is rather hard to eval-
uate efficiently. Even if we expand the weight in
terms of the continuous state as

/ P(YerlXer 2P |2 s Ve rie-1)dXer,
Xe,t
(11)

the second integrand term is still non-standard in
the presence of autonomous transitions.

We address this issue by ignoring the autonomous
transitions for the purpose of computing impor-
tance weights. In this case, the integrand is a
product of two Gaussians (assuming linearized
transitions and observations), and the weight can
be computed using the measurement residual

e =Yect — g(f(ﬁgl_u Uc,t—1; 335;1), Uc,t; ﬂﬁflz)t)

(12)

from the prediction step of an EKF:
wy) & N, 8) (13)
An open research problem is to approximate w§“
better in the presence of autonomous transitions.

Note that the expressions derived for the proposal
distribution and the importance weight (equations
9 and 13, respectively) are precisely the proba-
bilistic hybrid transition function Py and the hy-
brid observation function Py in equations 4-5. By
leveraging Rao-Blackwellisation, the algorithm el-
egantly unifies with HMM-based hybrid observers
and multiple-model estimation. In particular, ad-
vances in one method, e.g. a better approximation
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Fig. 6. The distribution of particles across the four

modes for the robot ball capture scenario.
to wg” in the particle filter or a more accurate
representation of the belief state in search-based
algorithms, may lead to improvements in the other
methods.

5. DISCUSSION

In our experiments, we simulated the motion of
the acrobatic robot with a differential equation
solver for three scenarios and generated noisy ob-
servations seen by the filter. Our implementation
only maintains the latest mode for each trajectory,
since the latest mode, along with the continuous
estimate, provide sufficient statistics for the sam-
pling and Kalman filtering steps.

Figure 6 shows a typical execution of the algo-
rithm with 100 particles when Ts = 0.01s. Ini-
tially, the robot is straight at 45 degrees from the
vertical. After swinging for one round, the robot
receives a ball and keeps it, which is correctly
detected by the filter.

For comparison, we also implemented a simple
bootstrap particle filter. However, the filter did
not converge even with 5000 particles. In the
near future, we hope to conduct a more rigorous
comparison with state-of-the-art particle filters
and the Gaussian beam filter used within hybrid
mode estimation (Hofbaur and Williams, 2002).

This paper demonstrated an efficient sampling
algorithm for hybrid models with autonomous
transitions. By sampling from a proposal distri-
bution that can be efficiently expressed using the
previous continuous state estimates, the algorithm
overcomes coupling between the discrete and con-
tinuous state. It provides natural unification of
Rao-Blackwellised particle filtering with multiple-
model filtering and methods based on HMM-style
hybrid prediction and update equations.
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