
A Decomposed Symbolic Approach to Reactive

Planning

Seung H. Chung and Brian C. Williams

Artificial Intelligence and Space Systems Laboratories
Massachusetts Institute of Technology

77 Massachusetts Ave. 37-346
Cambridge, MA 02139

{chung, williams}@mit.edu

Abstract. Autonomous systems in uncertain dynamic environments
must reconfigure themselves in response to unanticipated events and
goals in real-time. We present an approach to reactive configuration
planning based on the principle of decomposition. Reactive plans are
susceptible to exponential state space explosion. We address this prob-
lem through transition-based decomposition by generating compact de-

composed goal-directed plans. We further minimize state explosion by
adopting a symbolic representation based on Ordered Binary Decision
Diagrams. We demonstrate our reactive planner on representative space-
craft subsystem models.

1 Introduction

Recent failures in NASA’s Mars exploration program point to the need for in-
creased autonomous response in spacecraft. The presumed cause of failure for
the Mars Polar Lander (MPL) Mission [1] provides a relevant example. During
the final stage of MPL’s descent to the Martian surface, one sensor wrongfully
signaled the landing of the spacecraft. As a result, the descent engines were pre-
maturely shut off, causing MPL to crash into the surface. During this incident,
no communication was possible between MPL and ground control. Even if it
were, the outcome would likely have been inevitable due to the communication
time delay: when Mars is closest to Earth, commands from the ground take at
least 12 minutes to reach the spacecraft. Thus, an onboard reactive system is
necessary to autonomously respond to anomalies.

1.1 Motivation for Tractable Reactive Planning

While general-purpose onboard planners could be used for autonomous recon-
figuration, due to the PSPACE-complete nature of planning problems, real-time
response cannot be guaranteed. In time-critical situations, such as the MPL land-
ing scenario, late response could be disastrous to the mission. Reactive planning
is an approach that guarantees real-time response. A reactive planner precom-
piles a plan offline for all possible situations, and then executes the plan online.

2 Seung H. Chung and Brian C. Williams

In general, a reactive planner may not be able to optimize resource utilization.
However, the irreversibility associated with the use of nonrenewable resources
requires careful deliberation to ensure system safety and mission success:

Requirement 1. A reactive planner shall consider only reversible control ac-
tions, unless the effect is to repair failures [2].

One of the early approaches to reactive planning is universal planning, first
introduced by [3]. Though a universal plan can react to a nondeterministic en-
vironment, it cannot react to rapidly changing goals. Furthermore, [4] pointed
out the intractability of universal planning due to the exponential state space
explosion problem. Thus, a new reactive planning approach is necessary.

1.2 Handling State Explosion through Decomposition

The method of divide-and-conquer is a well known effective approach to solving
problems. Based on this principle, we have developed a new transition-based
decomposition method for reactive planning. Though this method is unrelated
to the structural decomposition used in constraint satisfaction problems (CSP)
[5], the contribution of our decomposition method to planning is analogous to
that of the structural decomposition methods for CSP.

CSPs are known to be NP-complete, but [6] has shown that a CSP with
a tree-structured constraint graph is solvable in linear time. Similarly, [2] have
shown that if a planning problem has an acyclic dependency, then the problem
can be solved within a state space that grows only linear in the number of
state variables. For CSPs that do not have tree-structured constraint graph,
Dechter and Pearl have shown that the constraint graphs of those problems can
be transformed into tree-structured graphs using a tree decomposition technique
[7]. In our approach, for planning problems with cyclic transition dependency
graph (TDG), we use transition-based decomposition to transform the cyclic
TDG to an acyclic TDG. As a result, even planning problems with cyclic TDG
can be solved within a state space that grows approximately linear in the number
of state variables.

1.3 Handling State Explosion through Symbolic Representation
(OBDD)

Through transition-based decomposition, our reactive planner divides a problem
into a set of subproblems. While transition-based decomposition addresses the
state explosion problem at the global level, we also address this issue at the
subproblem level by adopting a symbolic representation.

The logic synthesis and model checking communities have been using Or-
dered Binary Decision Diagrams (OBDD) [8] for compact state space encoding.
An OBDD-based model checking technique has proven particularly successful in
dealing with the state explosion problem [9]. Recognizing the similarities between
model checking and planning, [10] introduced a new universal planning technique

A Decomposed Symbolic Approach to Reactive Planning 3

that takes advantage of the OBDD. Since then, several OBDD-based universal
planning algorithms have been introduced for operating within nondeterministic
domains [11–13]. In our approach, we also take advantage of OBDD, but unlike
the universal planners, our reactive planner generates goal-directed plans (GDP)
that can react to the nondeterministic environment as well as rapidly chang-
ing goals. We generate these GDPs for each decomposed subproblem such that
the resulting decomposed goal-directed plan (DGDP) conforms to Requirement
1 while guaranteeing real-time response.

2 Spacecraft Communication System Example

Throughout the paper, we will use a model of a simplified spacecraft communica-
tion system (Figure 1) to present our decomposed symbolic approach to reactive
planning. Figure 1 depicts the direction of signal flow among components. The
computer sends data to be transmitted through the bus control. When the data
is received, the bus control routes it to the transmitter. The transmitter receives
the data and generates the corresponding signal. The signal is amplified by the
amplifier and is finally transmitted through the antenna. The computer is also
responsible for controlling the devices: it may command either the transmit-
ter or amplifier to be turned on or off. Again, these commands are sent to the
appropriate devices via the bus control.

Computer

Bus

Control

Transmitter

Amplifier

Antenna

Fig. 1. Simplified spacecraft communication system.

2.1 Modelling Behavior with Concurrent Automata

We model a system of concurrently operating components by a set of concurrent
automata. Figure 2 illustrates the concurrent automata of a transmitter and
an amplifier. The transitions between states are conditioned on commands (e.g.
cmdT = off) and states of other automata. For instance, the amplifier must be
turned off (A = off) before we can command the transmitter on or off. This
particular condition is necessary for the safety of the system, as the process
of switching the transmitter on or off may generate a transient signal spike
that could damage the amplifier. For the same reason, the transmitter must be
turned on before the amplifier can be turned on. We define concurrent automata
formally as follows:

4 Seung H. Chung and Brian C. Williams

Definition 1. A set of concurrent automata CA = {A(1),A(2), . . . ,A(n)} is
composed of concurrently operating finite automata. Each concurrent automaton
A(i) is a 3-tuple 〈Q(i), Σ(i), δ(i)〉, where Q(i) is a finite set of states, Σ(i) is a
finite set of inputs (either commands or states of other concurrent automata)
and δ(i) : Q(i) × Σ(i) → Q(i) is a transition function.

(a) Transmitter

(b) Amplifier

T = on
 T = off

A = on
 A = off

cmd

A

 = on

cmd

A

 = off

A = off

cmd

T

 = off

A = off

cmd

T

 = on

T = on

Fig. 2. Concurrent automata of a transmitter and an amplifier. Idle transitions are
omitted for clarity.

2.2 Representing CA Symbolically

For compactness, we encode the concurrent automata in an OBDD representa-
tion. In this representation, state s of concurrent automaton i is defined by a
vector of log2(|Q

(i)|) distinct Boolean variables, where |Q(i)| is the number of
elements in Q(i). Similarly, the input a is represented as a vector of Boolean vari-
ables. The transition relation for concurrent automaton i is R(i) : Q(i) × Σ(i) ×
Q(i) → B, where B is a set of Boolean values and R(i)(s, a, s′) = (s′ ∈ δ(i)(s, a)),
and s′ indicates the state at the next time step. For example, the transition
relation R(A) of the amplifier A is as follows:

[((A = off) ∧ ¬((T = on) ∧ (cmdA = on))) ⇒ (A′ = off)] ∧
[((A = off) ∧ (T = on) ∧ (cmdA = on)) ⇒ (A′ = on)] ∧

[((A = on) ∧ (cmdA = off)) ⇒ (A′ = off)] ∧
[((A = on) ∧ ¬(cmdA = off)) ⇒ (A′ = on)]

Figure 3(a) illustrates the OBDD representation of the transition ((A = on) ∧
(cmdA = off)) ⇒ (A′ = off). Figure 3(b) shows the result of conjoining the
OBDDs of the transitions into the transition R(A)1. Each node of an OBDD
represents a Boolean variable, and the dotted and the solid outgoing edges
respectively represent false and true evaluations of the Boolean variable. The
terminal nodes 1 and 0 represent the evaluation of the Boolean function (i.e.
OBDD) where each path from the root to a terminal evaluates to 1 for true or
0 for false. In Figure 3(b), all paths that lead to false have been omitted for
simplicity. One of the benefits of using OBDDs to represent transition relations
is in relative compactness of OBDDs. [12] shows that the size of an OBDD does
not necessary depend on the number of states, but rather on the structure of
the information the OBDD encodes.
1 In this example, we assume cmdT and cmdA are on or off at all times.

A Decomposed Symbolic Approach to Reactive Planning 5

T = on

A = on

A' = on

cmd

A

 = on
 cmd

A

 = on

A' = on

1

A = on

A' = on

cmd

A

 = on

1
 0
(a)
 (b)

Fig. 3. OBDD representation of (a) ((A = on) ∧ (cmdA = off)) ⇒ (A′ = off) and (b)
amplifier transition relation R(A).

3 Subgoal Serialization through Transition-based

Decomposition

A set of subgoals are serializable if and only if a goal can be partitioned into
a set of subgoals that can be solved sequentially to achieve the goal [14]. For
example, consider the driver and valve shown in Figure 4. The driver is a device
that commands the valve open or closed. Thus, the driver must be on (D = on),
before the valve can be commanded open or closed. Presume that the current
state of the driver and valve system is (D = off , V = closed) and the goal state
to achieve is (D = off , V = open). In this case, we do not have to figure out
how to achieve (D = off) and (V = open) simultaneously. Rather, we can figure
out how to achieve (V = open) first. Once (V = open) has been achieved, we
can then figure out how to achieve (D = off), without worrying about potential
impact on the (V = open) subgoal. Hence, the subgoals are serializable.

D = on

D = off

V = open

V = closed

cmd

V

 = open
 cmd

V

 = close
cmd

D

 = on
 cmd

D

 = off

D = on
 D = on

(a)
 (b)

Fig. 4. Concurrent automata for (a) Driver, and (b) Valve.

[2] recognized that a set of subgoals are serializable if the transition depen-
dency graph (TDG) of a system is acyclic, where TDG of a concurrent automata
is formally defined as follows:

Definition 2. A transition dependency graph G of CA is a directed graph whose
vertices are the concurrent automata {C}. G contains a directed edge from vertex
C(i) to vertex C(j), if C(i) occurs in the antecedent (precondition) of one of C(j)’s
transitions.

For the driver and valve, the valve’s ability to open or close depends on the
state of the driver. The driver, however, does not depend on the valve, so we can

6 Seung H. Chung and Brian C. Williams

change the driver state without affecting the valve state. Hence, the dependency
relationship is acyclic.

For a system with a cyclic TDG, we can transform it into an acyclic graph
through transition-based decomposition. For example, TDG of the communica-
tion system is cyclic, as shown in Figure 5. However, if we group the transmitter
and the amplifier, and consider them as a single vertex in TDG, the result-
ing graph is acyclic. We recognize that a set of cyclic vertices in TDG directly
corresponds to a strongly connected component (SCC) of the TDG.

Computer

Bus

Control

Transmitter

Amplifier

Antenna

Fig. 5. Cyclic transition dependency graph of a spacecraft communication subsystem.

4 Goal-directed Plan

With the TDG decomposed into a set of SCCs, we can generate a GDP for each
SCC individually. As the automata within a SCC have cyclic dependency, we
must consider the concurrency and interdependence of the automata. With this
in mine, we first compose the automata within a SCC into a single automaton.
Then, we generate a GDP based on the composed automaton.

4.1 Composing Automata

Continuing with the transmitter/amplifier example, we want to construct a sin-
gle automaton that represents both components, as shown in Figure 6. Notice
that one transition seems missing, the transition from (T = on,A = off) to
(T = off , A = on). According to the model shown in Figure 2, such a transition
may occur if the transmitter is commanded off (cmdT = off) and the amplifier is
commanded on (cmdA = on) simultaneously. In controlling concurrent devices,
however, such synchronized control cannot be guaranteed; in fact, such com-
manding is nearly impossible, and taking such an action could be hazardous, as
the amplifier may be damaged if (cmdA = on) precedes (cmdT = off) even by a
fraction of a second. Thus, before composing automata, we modify the transition
relation for each automaton to avoid such hazards. If a transition is conditioned
on the state of another automaton, we require that the state condition be true
before and after the transition occurs.

For example, consider the amplifier’s transition from off to on:

((A = off) ∧ (T = on) ∧ (cmdA = on)) ⇒ (A′ = on)

A Decomposed Symbolic Approach to Reactive Planning 7

(
T = on, A = on
)

cmd

A

 = on

cmd

A

 = off

cmd

T

 = on
 cmd

T

 = off

(
T = off, A = on
)
 (
T = off, A = off
)

(
T = on, A = off
)

cmd

A

 = off

Fig. 6. Automaton of composed transmitter and amplifier automata. Idle transitions
are omitted for clarity.

The transition relies on the transmitter being on (T = on). Thus, we modify the
transition to guarantee that the transmitter is on before and after:

((A = off) ∧ (T = on) ∧ (T ′ = on) ∧ (cmdA = on)) ⇒ (A′ = on)

With the modified transition relations, composing the concurrent automata into
a single automaton is trivial. The composed transition relation RSCC of a SCC
is

RSCC =
∧

C(i)∈SCC

R(i)

4.2 Generating the Goal-directed Plan

A GDP is comprised of a set of goal-directed rules, where a goal-directed rule
is a 3-tuple 〈s, a, s′〉. A goal-directed rule can be interpreted as “if the current
state is s and the goal state is s′, execute a”. Figure 7 is a tabular representation
of the goal-directed plan for the transmitter/amplifier SCC. Each entry in the
table corresponds to a goal-directed rule. While a in this GDP is only composed
of commands, a may in general contain states of other automata that precede
the SCC in the dependency ordering. For example, one of the goal-directed rules
for the valve is

〈(V = open), (D = on, cmdV = close), (V = closed)〉.

(D = on) is an intermediate subgoal that must be achieved before we can com-
mand the valve closed.

We generate the GDP by iteratively searching the state space in parallel,
backward, and breadth-first manner. With OBDDs, states within the search
space do not have to be enumerated; instead, we can generate goal-directed
rules of all goals and initial states simultaneously, thus “in parallel”. The search
method is also characterized as a “backward search”, as the GDP is generated
by searching for the states that can reach the goal, instead of searching for the
goals that can be reached from the current state. Of the goal-directed rules,
we generate the one-step rules (i.e. goal-directed rules with goals that can be
achieved in a single transition) fist. In Figure 7, one-step rules are those with
“(1)” next to the commands. Notice that one-step rules correspond directly to

8 Seung H. Chung and Brian C. Williams

Current
State

Goal State

T=on,A=on T=on,A=off T=off,A=off T=off,A=on

T=on,A=on idle cmdA=off (1) cmdA=off (2) failure

T=on,A=off cmdA=on(1) idle cmdT =off (1) failure

T=off,A=off cmdT =on(2) cmdT =on(1) idle failure

T=off,A=on cmdA=off (3) cmdA=off (2) cmdA=off (1) idle

Fig. 7. Goal-directed plan for the transmitter/amplifier system. The number next to
each command represents the total number of steps necessary to achieve the goal.

the transitions in transition relation. Next, we generate two-step rules, labelled
“(2)” in Figure 7. We continue this process until the fixed-point is reached, thus
“breadth-first”. In general, the fixed-point of the iterative search is defined by
the width of the transition graph of the automaton. In our transmitter/amplifier
example, the fixed-point is reached after two iterations (i.e. after the three-step
rules are generated). The algorithm for generating the GDP is as follows:

Algorithm 1 ComputeGDP(T)

1: oldP lan ← ∅
2: newPlan ← T

3: while oldP lan 6= newPlan do

4: oldP lan ← newPlan

5: newPlan ← oldP lan ∪ ComputeNextStepRules(T, oldP lan)
6: return newPlan

The algorithm ComputeGDP takes the transition relation T of an automaton
as its input. As we have discussed, the one-step rules are exactly the transition
relation as reflected in line 2 of ComputeGDP. In lines 3–5, it iteratively searches
for two-step rules, three-step rules, etc. while adding them to the newPlan. The
procedure exits once the fixed-point is reached (line 3), and returns the plan
(line 6).

In line 5, ComputeNextStepRules(T,oldPlan) generates n-step rules when
the oldPlan contains all rules of less than n-steps. Assume that a relation si ∧
aj ⇒ s′k is in the transition relation T and an (n − 1)-step rule 〈sk, al, s

′
m〉 is in

the old goal-directed plan oldPlan. Then, 〈si, aj , s
′
m〉 is one of the valid n-step

rules returned by ComputeNextStepRules(T,P). For example, from the 1-step
rule

〈(T = on, A = off), (cmdT = off), (T ′ = off , A′ = off)〉

and the transition relation

((T = on,A = on) ∧ (cmdA = off)) ⇒ (T ′ = on,A′ = off)

the 2-step rule

〈(T = on,A = on), (cmdA = off), (T ′ = off , A′ = off)〉

A Decomposed Symbolic Approach to Reactive Planning 9

can be deduced.
Formally: ComputeNextStepRules(T,P) generates a set of n-step goal-directed

rules 〈s, a, s′〉, where T is a transition relation and P is a goal-directed plan with
only m-step rules, where m < n. Each rule 〈si, aj , s

′
k〉 is restricted such that

s′l ⊆ (T ∧ si ∧ aj), 〈sl, am, s′k〉 ∈ P, and ¬∃a.〈si, a, s′k〉 ∈ P.
s′l ⊆ (T∧si∧aj) states that s′l must be reachable from state si through input

aj . The restriction ¬∃a.〈si, a, s′k〉 ∈ P says that 〈si, aj , s
′
k〉 cannot be a new goal-

directed rule if a rule for the current state si and the goal state s′k already
exists in the plan P. With this restriction, the resulting GDP is guaranteed to
be optimal, where an optimal plan is defined as a plan with the shortest control
sequence. For example, while

〈(T = on,A = off), (cmdT = off), (T ′ = on,A′ = on)〉

is a 3-step rule, it is not a valid rule since the optimal 1-step rule already exists
in the plan:

〈(T = on,A = off), (cmdA = on), (T ′ = on,A′ = on)〉

The algorithm for ComputeNextStepRules(T,P) is shown in algorithm ??.
This algorithm leverages the OBDD representation to efficiently search the state
space, without enumeration.

Algorithm 2 ComputeNextStepRules(T, P)

1: nextP lan ← T[sTemp/s′] ∧ ∃a.P[sTemp/s]

2: optimalNextP lanWithNoCmd ← ∃a.nextP lan − ∃a.P

3: return nextP lan ∧ optimalNextP lanWithNoCmd

Line 1 of ComputeNextStepRules(T,P) computes all next step goal-directed
rules including the non-optimal ones2. Line 2 determines which rules are the
valid (i.e. optimal) rules. Finally, line 3 returns only those rules that are valid.

5 Decomposed Goal-directed Plan

Once the TDG is made acyclic, we can generate a GDP for each SCC succes-
sively, instead of generating a single GDP for the whole CA. This set of GDPs
for all SCCs in the system is called a decomposed goal-directed plan (DGDP).
The advantage of this composition is that the footprint of the DGDP is much
smaller than a single GDP for the full CA. For example, let us assume that the
number of concurrent automata, |CA|, is n, and the average number of states per
automaton, |Q|, is m. If we generate a single GDP for CA, the number of states
in GDP is exponential in |CA|, O(mn). If the maximum number of automata

2 [sTemp/s] symbolizes the replacement of variable s with variable sTemp.

10 Seung H. Chung and Brian C. Williams

in an SCC is w, however, the number of states in the corresponding DGDP is
only O(l · mw), where l is the total number of SCCs. Thus, even if the size of a
CA grows, as long as m and w remains constant, the size of the corresponding
DGDP grows only linearly in l. The algorithm for generating DGDP is of CA as
follows:

Algorithm 3 ComputeDGDP(n,R, q)

1: revReachAncs ← ∅
2: for i = 0 to (n − 1) do

3: allwdR ← R[i] ∧ revReachAncs

4: DGDP [i] ← ComputeGDP(allwdR)
5: revReachAncs ← revReachAncs ∪ ComputeRRS(R[i], q[i])
6: return DGDP

where n is the number of composed automata (i.e. SCCs), R is an array of
transition relations of the composed automata sorted in dependency order (i.e.
inverse depth-first order of TDG), and q is an array of current states of the com-
posed automata, also in dependency order. Lines 2–5 successively generates the
GDP of each SCC in dependece order, storing an array of GDPs in DGDP (line 4).
A GDP is computed from a subset of the SCC transition relation, allwdR, where
the subset is restricted to the transitions whose antecedents (subgoals in GDP)
are reversibly reachable from the current state q. This restriction guarantees the
aforementioned requirement 1. In line 5, the reversibly reachable states of the
i-th SCC are generated and added to the set of reversibly reachable ancestor
states revReachAncs to be used in the next iteration.

6 DGDP Execution

Figure 8 shows a DGDP for a driver and a valve. We execute DGDP in inverse
dependency order (e.g. the valve then the driver). For example, let us assume the
driver and valve are off and closed, respectively, and the goal is to turn off the
driver and open the valve. First, we must attempt to open the valve, according to
the inverse dependency order. To switch the valve open from the closed position,
the driver must be on and the valve must be commanded open as shown in
Figure 8. Here, (D = on) is a subgoal that must be achieved before executing
the command (cmdV = open). As the driver is currently off, we determine how
to turn the driver on by looking up the driver plan in Figure 8. According to the
plan, we simply command the driver on (cmdD = on). Once the driver is turned
on, then we can command the valve to open (cmdV = open). Once the valve
is opened, then the drive can be turned off again. [2] discuss DGDP execution
algorithm in detail. The incremental nature of the algorithm allows for robust
execution that immediately responds to failures or sudden changes in goals.

A Decomposed Symbolic Approach to Reactive Planning 11

Current
State

Goal State
Current
State

Goal State

D=on D=off D=on D=off

D=on idle cmdD=off V=open idle
D=on

cmdV =close

D=off cmdD=on idle V=closed
D=on

cmdV =open
idle

Fig. 8. Factored goal-directed plan for a valve driver (left) and a valve (right).

7 Conclusion

Our decomposed symbolic approach to reactive planning is novel in two ways.
First, it leverages transition-based decomposition to eliminate the state space
explosion problem in reactive planning. When transition-based decomposition is
used to solve a problem, the complexity of the problem becomes linear in the size
of the SCCs instead of being exponential in the size of CA. As long as the size
of the SCCs remains relatively small, the problem remains tractable. Second, we
incorporate the use of OBDDs into reactive planning, which gives us two distinct
advantages: (1) we can search the state space without the need to enumerate
the states, and (2) we can take advantage of the OBDD’s compact state space
encoding capability.

8 Acknowledgments

This work was supported in part by NASA’s Cross Enterprise Technology Devel-
opment program under contract NAG2-1466, DARPA MOBIES program under
contract F33615-00-C-1702, and NASA Graduate Student Research Program
Fellowship.

References

1. Casani, J., Whetsler, C., Albee, A., Battel, S., Brace, R., Burdick, G., Burr, P.,
Dippoey, D., Lavell, J., Leising, C., MacPherson, D., Menard, W., Rose, R., Sack-
heim, R., Schallenmuller, A.: Report on the Loss of the Mars Polar Lander and
Deep Space 2 Missions. Technical Report JPL D-18709, Jet Propulsion Laboratory,
California Institute of Technology (2000)

2. Williams, B.C., Nayak, P.P.: A Reactive Planner for a Model-based Executive. In:
Proceedings of the Fifteenth International Joint Conference on Artificial Intelli-
gence (IJCAI’97), Nagoya, Japan (1997)

3. Schoppers, M.J.: Universal Plans for Reactive Robots in Unpredictable Environ-
ments. In: Proceedings of the Tenth International Joint Conference on Artificial
Intelligence (IJCAI’87). Volume 2., Milan, Italy (1987) 1039–1046

4. Ginsberg, M.L.: Universal Planning: An (Almost) Universally Bad Idea. AI Mag-
azine 10 (1989) 40–44

12 Seung H. Chung and Brian C. Williams

5. Gottlob, G., Leone, N., Scarcello, F.: A Comparison of Structural CSP Decom-
position Methods. In Dean, T., ed.: Proceedings of the Sixteenth International
Joint Conference on Artificial Intelligence (IJCAI’99), Stockholm, Sweden (1999)
394–399

6. Freuder, E.C.: A Sufficient Condition for Backtrack-Bounded Search. Journal of
the ACM (JACM) 32 (1985) 755–761

7. Dechter, R., Pearl, J.: Tree Clustering for Constraint Networks. Artificial In-
teligence 38 (1989) 353–366

8. Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers C-35 (1986) 677–691

9. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang:, L.J.: Symbolic
Model Checking: 1020 States and Beyond. Information and Computation 98 (1992)
142–170

10. Cimatti, A., Giunchiglia, F., Giunchiglia, E., Traverso, P.: Planning via Model
Checking: A Decision Procedure for AR. In: Proceedings of the Fourth European
Conference on Planning (ECP’97), Toulouse, France (1997)

11. Cimatti, A., Roveri, M., Traverso, P.: Strong Planning in Non-Deterministic Do-
mains via Model Checking. In: Proceedings of the Fourth International Conference
on Artificial Intelligence Planning Systems (AIPS’98), Pittsburgh, Pennsylvania
(1998)

12. Cimatti, A., Roveri, M., Traverso, P.: Automatic OBDD-based Generation of Uni-
versal Plans in Non-Deterministic Domains. In: Prodeedings of the Fifteenth Na-
tional Conference on Artificial Intelligence (AAAI’98), Madison, Wisconsin (1998)

13. Jensen, R.M.: OBDD-based Universal Planning in Multi-Agent, Non-Deterministic
Domains. Master’s thesis, Technical University of Denmark (1999)

14. Korf, R.E.: Planning as Search: A Quantitative Approach. Artificial Intelligence
33 (1987) 65–68

