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Abstract

In order for an autonomous agent to successfully
complete its mission, the agent must be able to quickly re-
plan on the fly, as unforeseen events arise in the
environment. This is enabled through the use of temporally
flexible plans, which allow the agent to adapt to execution
uncertainties, by not over committing to timing constraints,
and through continuous planners, which are able to replan at
any point when the current plan fails. To achieve both of
these requirements, planners must have the ability to reason
quickly about timing constraints.

We enable continuous, temporally flexible planning
through a temporal consistency algorithm (ITC), which
supports incremental consistency testing on a new type of
disjunctive temporal constraint network, the Temporal Plan
Network (TPN), and supports focused search through
incremental conflict extraction.  The ITC algorithm
combines the speed of shortest-path algorithms known to
network optimization with the spirit of incremental
algorithms such as Incremental A* and those used within
truth maintenance systems (TMS). Empirical studies of
ITC applied to the Kirk temporal planner demonstrate an
order of magnitude speed increase on cooperative air
vehicle scenarios and on randomly generated plans.

Introduction

Autonomous robots and vehicles are quickly becoming
an integral part of modern society. These autonomous
agents have long been building and assembling our
automobiles. In the future, these agents will perform more
complex tasks, such as Mars exploration and flying
unmanned aerial vehicle missions for search and rescue.

Due to the dynamic and unpredictable nature of these
planning environments, complex autonomous missions
will require planners that are capable of continuous
planning (Estlin et al. 2000). Continuous planners, such as
ASPEN (Rabideau et al. 1999) are capable of quickly
generating a new plan as soon as an environment change
breaks the current mission plan.

A downside of these continuous planners is that they do
not allow for temporal flexibility in the execution time of
activities, as they assign hard execution times to activities.
Temporally flexible planners, such as HSTS (Muscettola et
al. 1998), are able to adapt to perturbations in execution
time without breaking the entire plan. These planners only

impose those temporal constraints required to guarantee a
plan’s success, leaving flexibility in the execution time of
activities. This flexibility is then exploited, in order to
adapt to uncertainty, by delaying the scheduling of each
activity until it is executed.

To be robust to major disturbances that lead to plan
failure, a temporally flexible planner must be able to replan
quickly. However, state of the art temporally flexible
planners have not yet achieved the efficiency of
continuous planners, like Aspen. Our objective is to
provide the computational building blocks that enable
continuous, temporally flexible planning.

The core task repeatedly performed by a continuous,
temporally flexible planner is to determine the temporal
consistency of each candidate plan. Simply put, all such
planners generate a candidate plan and then test the plan
for temporal consistency. This generate and test loop
highlights two ways to increase planning speed: 1)
Increase the speed of the testing phase by speeding up the
temporal consistency checking algorithm, and 2) decrease
candidate plan generation, by improving the generator’s
ability to prune candidates without generation.

We achieve dramatic increases along both fronts by
drawing upon principles of incremental reasoning (Koenig
and Likhachev 2001) (McAllester 1990) (Gerevini et al.
1996) (Cesta and Oddi 1996), and conflict-directed search
(Ginsberg 1993) (Williams and Ragno 2002), which have
been used to achieve efficient consistency checking of
simple temporal networks (STNs), and to achieve efficient
model-based diagnosis, respectively. We increase
efficiency during testing by providing an incremental
temporal consistency algorithm (ITC) that reasons in terms
of only the differences between the temporal constraints of
successive candidate plans. Our empirical results show
that these differences and their logical consequences are
small relative to the overall plan size, resulting in a
significant decrease in the number of temporal inferences
(arc updates) performed. We increase efficiency of
candidate plan generation by identifying the subset of
temporal constraints that lead to temporal inconsistency,
known as conflicts, and use these conflicts to prune sets of
infeasible candidate plans, without explicitly generating
them. Our empirical results also show that the number of
candidate plans generated using conflicts is significantly
reduced.



The central focus of this paper is the ITC algorithm and
its empirical evaluation. While ITC is planner
independent, we benchmark it using the Kirk planner,
reported elsewhere in (Kim, Williams, and Abrahmson
2001).  First, we introduce background in temporal
consistency checking of STNs, using shortest path
algorithms on distance graphs. Second, we introduce
ITC’s algorithm for checking incremental temporal
consistency. The ITC algorithm has similar ties to work by
(Cesta and Oddi 1996) and (McAllester 1990) in which a
set of support is used to perform incremental updates.
Third, we augment ITC with an algorithm for conflict
extraction that is itself incremental. The challenge of this
task is to maintain a correct set of support incrementally, as
an STN moves from inconsistent back to consistent.
Fourth, we describe how ITC is incorporated within the
generate and test loop of a temporally flexible planner in
general, and specifically for the Kirk planner. Kirk is part
of an executive that generalizes temporally flexible plan
execution to the execution of temporally flexible
contingent plans. Kirk selects a feasible plan from the set
of contingencies, by encoding the contingent plan in a
Temporal Plan Network (TPN) (Kim, Williams, and
Abrahmson 2001), and by solving the TPN as a temporal
conditional CSP. The TPN encapsulates a novel
disjunctive temporal network, distinct from the Disjunctive
Temporal Problem(DTP) (Stergiou and Koubarakis 1998),
and the Conditional Temporal Problem(CTP)
(Tsamardinos et al. 2003). Finally, we evaluate the
performance of our ITC implementation within Kirk,
applied to a range of structured and unstructured, randomly
generated planning problems.

Background: Consistency of STNs

The temporal constraints of a candidate plan are expressed
as an STN. An STN is checked for temporal consistency
by first converting the STN to an equivalent
representation, called a distance graph. The STN is
temporally consistent if and only if its corresponding
distance graph does not contain a negative cycle (Decter,
Meiri, and Pearl 1991).

Simple Temporal Network (STN)

An STN is comprised of a set of nodes, representing
temporal events, and labeled arcs between nodes,
representing constraints on the duration between two
events. Each arc has a label [/u/, representing the lower |
and upper u bounds on the duration from the event at the
tail of the arc to the event at the arc’s head. For example,
the simple temporal constraint in Figure 1 says that End-
engine-start must occur between 1 and 5 time units after
Begin-engine-start.

STN to Distance Graph Conversion

A distance graph is similar to an STN, in that the nodes in
a distance graph represent time points. In a distance graph,

however, an arcs label u specifies only an upper bound on
the duration from the tail event t to the head event h of the

arc (h—t< u).
Begin- [1.,5] End-
engine-start engine-start

Figure 1 Example STN

An STN is converted to a distance graph by copying the
nodes and by mapping each arc of the STN to two
additional arcs, one in the forward direction and one in the
reverse direction. The forward arc is labeled with the
value of the upper time bound and the reverse arc is
labeled with the negative of the lower time bound value
(Figure 2).
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Figure 2 STN to Distance Graph Conversion
The equation below specifies how each timepoint
constraint for an STN is converted to a constraint for the
distance graph for an arbitrary arc;.
T-Tellul = T-T<unT-T<-

STN Distance Graph
Figure 3 Equation for STN to Distance Graph Conversion

As an example, in Figure 2, timepoint B is executed at
most u time units after timepoint 4. Similarly, since
timepoint 4 occurs before timepoint B, timepoint 4 must
be executed at most -/ time units after timepoint B, or
equivalently, timepoint 4 must be executed at least / time
units before timepoint B.

Detecting Temporal Inconsistency through
Negative Cycle Detection

In order for an STN to be temporally consistent, the
equivalent distance graph of the STN must not contain a
negative cycle. This is proved rigorously in (Decter,
Meiri, and Pearl 1991). Intuitively, since the edge weights
in the distance graph represent the amount of time that an
event must happen before another event (e.g. event B must
happen at least / time units after event 4 and event 4 must
happen at least u time units before B), then a negative
cycle in the distance graph would correspond to having a
temporal constraint saying that a timepoint must happen at
most some positive time units before the same timepoint
(e.g. event 4 must happen at least 5 time units before event
A). Having a constraint such as this makes little sense and
is the basis for the intuitive argument.



Negative Cycle Detection Using Label-
Correcting Algorithms

In order to find a negative cycle in the distance graph, it is
unnecessary to compute the shortest-path for every pair of
nodes, as compiled by APSP algorithms. If a negative
cycle exists, it can be detected by just computing the
shortest-paths from one single node to all the other nodes,
that is, the single source shortest path (SSSP). The reason
is, if a node is involved in a negative cycle, then the
shortest-path to that node from any source node connected
to it is —oo. This follows because a shortest-path can
continually loop along the negative cycle, reducing path
distance indefinitely.

There are several ways for a shortest path algorithm to
determine it has entered a negative cycle. Most of these
algorithms are based on the concept of label correction, in
which an edge weight is incrementally reduced to its
shortest path value. The simplest, and most conservative
cycle detection algorithm, is to observe that a node’s
shortest-path value drops below —nC, where n is the
number of nodes in the STN, and C is the value of the
largest forward arc label in the STN. A faster technique is
to keep a spanning tree of the shortest-path support for
each node, and terminate as soon as a cycle is detected in
the spanning tree (Cesta and Oddi 1996). A third method
is to check if any node’s shortest-path value has been
updated twice. This method, however, can only be used
when the candidate STN begins from a consistent context.

Using only a SSSP algorithm offers significant savings
over an APSP algorithm. As an example, the runtime for
Floyd-Warshall’s APSP algorithm is 8(n’), where n is the
number of nodes in the graph. The SSSP algorithm, such
as the FIFO label-correcting algorithm, has a worst-case

FIFO Label -Correcting Algorithm

(Graph G)

{01} for all s € V(G)

{02} d(s) = oo
Initialize = >{03a} d(Sstart) = 0

{03b} Q.insert( Sstart )

Check for 04 hile ! N
Violating Arcs {04a} while !Q.empty()

{04b} u = Q.pop ()
Update ——> {05a} for v € Succ(u)
{05b} dval = Update (u,v)
{06} if(dval) < -nC
{07} return false;

{08} return true;

value Update (p,x)

{09} if (d(x) > d(p) + c(p,x))
{10} d(x) := d(p) + c(p,x);
{11} Q.Insert(x, d(x));
{12} return d(x);

Figure 4 Pseudo-code for FIFO Label-Correcting Algorithm

runtime of O(nm), where n is the number of nodes and m
is the number of arcs in the graph.

FIFO Label-Correcting Algorithm

ITC is a variant of a label-correcting algorithm. Label-
correcting algorithms find shortest-paths by performing
three key procedures. It first initializes shortest-path
values, d, to oo, scans arc costs, ¢, for whether shortest-
paths can be improved ( if d(x) > d(p) + c(p,x) ), and then
updates these arcs with new values. The algorithm then
iterates until all violating arcs have been updated.

The FIFO label-correcting algorithm simply refers to an
efficient implementation of the generic label-correcting
algorithm in which a queue of updated nodes is
maintained, in order to check for outgoing arcs that might
be potentially violating. If during a particular iteration of
the algorithm, the shortest-path distance, d(i), from the
source to node i was not updated, then no new information
is learned about the shortest-path to that node. Any arc
emanating from that node that was not violating before the
update is still not violating after the update, and need not
be scanned. Conversely, if an update occurs for a
particular node 7, then d(i) + c¢(i,j) may have become less
than d(j), thus any outarc (7,j) may have become violated.
Hence to find violated arcs, it is sufficient to add each
update node to a queue and then examine all of the outarcs
of a node on the queue.

At initialization of the FIFO label-correcting algorithm,
only the start node’s outarcs are potential violating arcs,
because the other node’s start distances are set to 0. Thus,
only the start node is put initially in the queue. As nodes
are taken out of the queue and updates occur, these
updated nodes are added to the queue, requiring additional
examination of the outarcs of the queued node. Once the
queue is empty and consequently no arcs remain, we have
the optimal shortest-path solution. The pseudo code for
the FIFO label-correcting algorithm is shown in Figure 4.

The worst-case running time for a label-correcting
algorithm is much faster than any all-pairs shortest-path
algorithm, O(nm) versus O(n’logn + nm) of Johnson’s
APSP algorithm. However, using the modified label-
correcting algorithm with an efficient implementation of
the update queue, the average case runtime of the
algorithm can be reduced significantly, sometimes to O(m)
(Ahuja, et al. 1993). For simplicity, we show the
conservative —nC method for negative cycle detection, but
a more efficient method, such as the spanning tree method,
could also be used.

Next we develop a variant of the FIFO Label-Correcting
Algorithm which is incremental and has three novel
characteristics: 1) doesn’t assume the candidate STN starts
from a consistent context, 2) has a conflict extraction
mechanism, and 3) allows multiple arc changes at once.



void

. Initialize()
The Incremental Temporal Consistency o1 o -2
. {02} for all s € V(G)
Algorithm (ITC) 00 me e
{04} p(s) := unknown;
{05} d(sstart) := 0;
{06} Q.insert (sstart);
Overview _
Conflict
A temporal planner requests temporal consistency checks ChecktemporalConsistency (3)
K . R {07} while !Q.empty()
on STNs of candidate plans as they are built up, constraint {08} u = Q.pop ()
by constraint, and as constraints are removed, when e
shifting to alternative candidates. As a result, the STN of (1) if(aval) < -nc
the new plan differs from the previous STN only by a few v it riipiii
arcs and nodes. This means that only the previously 113} return g
computed shortest-path values that are affected by the value
newly changed arcs and nodes need to be updated. e ) ) s at + o)
Temporal consistency of an STN can therefore be 115} dly) - A + el
determined with fewer node updates. ~Additionally, if the R
ITC algorithm finds that a candidate STN is inconsistent, it 118) return d(y);
will return a set of simple temporal constraints involved in conflict
the inconsistency. This ultimately increases the speed at ExtractContlict (o, 1)
. . . {19} if L.contains(c)
which the planner finds a consistent candidate plan. A (20 return L;
discussion of conflict extraction algorithms for optimal o s
search together with a performance analysis can be found (23)  ExtractConflict(p(e),L);
in (Williams and Ragno 2002). Figure 5 shows how the void
ITC algorithm communicates with the plan generation Modi £yConstraint (1, v, 1,u)
. {24} ModifyArc(arc(y,x),-1)
algorithm. {25} ModifyArc(arc (x,y) ,u)
void
Candidate Plan Generation ModifyAre (arc, )
{26} setCost(arc,c);
{27} if (d(arc.head > d(arc.tail) + c)
New or Modified . {28} d(arc.head) := d(arc.tail) + c;
Constraints Inconsistency
(Arcs) And Conflict {29} p(arc.head) := arc.tail;
{30} Insert (arc.head);
{31} elseif (d(arc.head) < d(arc.tail) + c
Incremental Temporal Consistenc: (320 dlare.head) =
CheckingpAlgorithm Y (33} p(arc.head) := unknown;
{34} set<Node> nodes_reset =
{35} nodes_reset.insert (arc.head);
{36} nodes_reset.insert (InvalidateSupports (arc.head))
Figure 5 ITC Algorlthm {37} InsertParents (nodes_reset)
Given a new temporal constraint, the ITC algorithm T oarente (eetedes reset modes)
performs the following steps in order to quickly determine {38} for all n e reset_nodes
the temporal consistency of the graph and, if inconsistent, (39) for all m € Pred(n)
. . . . . {40} if( d(n) != 00 || p(s) != unknown )
the conflict involved in the inconsistency. (a1) Insert (m);
set<Node>
ITC PSeudO'COde InvalidateSupports (Node n)
. . (42} set<Node> nodes_reset = (J;
When the planner requires a temporal consistency check (43} for all s & Suce(n)
. s . (44} if( p(s) ==n )
on a candidate STN, it calls CheckTemporalConsistency. o) it e
Depending on whether the consistency check is starting (46} dls) i= 07
. . . {47} nodes_reset.insert( InvalidateSupports(s) );
from scratch or incrementally, the planner will call either (48]  elseif( d(s) != o0 OR pls) != N,
Initialize or ModifyConstraint, respectively. When e e
. . . . p(s) := unknown;
CheckTemporalConsistency returns, it will either return a (51} nodes_reset.insert ( InvalidateSupports(s) );
conflict if there is an inconsistency or it will return no {52} return nodes_reset;
conflict if the graph is consistent. void
. B . . updateITCwithNegativeCycle (set<Node> neg_cycle)
If an inconsistency is found, the algorithm calls (53} set<Node> nodes_reset = g5 ;
ExtractConflict to collect all nodes in the negative cycle G5 A e
. . 1= 007
and then returns them collectively as the conflict. Next, {56) i i= unknoun;
the algorithm needs to call updateITCwithNegativeCycle, {570 modes_reset.dnsert (n)
. A (58} nodes_reset.insert ( InvalidateSupports(n) );
which resets all shortest-path values of nodes in the (59)  Insercparents( nodes_reset );

negative cycle, and also resets any shortest-path values of

. Fi 6 ITC Pseudo-Cod
nodes that depend on the negative-cycle for support. ‘gure seudo-Lode



After all nodes that depend on the negative cycle are
reset, modifyConstraint may be called (multiple times if
needed) to make any necessary changes to resolve the
conflict. CheckTemporalConsistency may then be called
again to test consistency of the new candidate STN.

Insufficiency of FIFO Label-Correcting to
Perform Incremental Temporal Consistency

In order to perform a temporal consistency check, we must
use an algorithm that is capable of detecting negative
cycles. As discussed earlier, the FIFO label-correcting
algorithm is a good choice because of its efficiency. It also
has some of the capabilities needed to perform incremental
updates. In particular, the label-correcting algorithm can
handle a change that improves a node’s shortest-path
distance, since all it needs to do is add the node to the
queue and propagate the update down the line. However,
the label correcting algorithm is not capable of handling
cases in which an edge distance increases the shortest-path
to a node and, as a consequence, a new shortest-path
exists. To handle this case, we introduce a set of support
for keeping track of which shortest-path distances on
nodes affect each other. Additionally, the label correcting
algorithm halts when a negative cycle is detected, so it
can’t reuse any previous computation. Thus, to reuse all
previous computations that remain valid, ITC maintains a
correct set of support incrementally as a negative cycle is
discovered and the STN moves from inconsistent back to
consistent.

ITC Algorithm’s Incremental Update Rules

ITC’s incremental update rules for an arc change are
divided based on how that arc change affects the shortest-
path distance at its head node. There are three types of
effects (1) no effect to the current shortest-path, (2)
improves the shortest-path, and (3) invalidates the current
shortest-path.

(1) Arc Change without Effect to Shortest-Path

An arc can change in such a way that the shortest-path
to a node is unaffected. This may be the case either as a
result of an arc increase or decrease. The graph in this
case requires no updates, because the shortest-path
distances have not changed.

For example, in Figure 7, the current best way to reach

Figure 7 Arc Change Without Effect to Shortest-Path

node j is to go through node g, as specified by the
predecessor pointer (p=g) of node j. This path reaches

node j with a cost of 7. The figure indicates that arc;;
increases from a cost of 2 to a cost of 3. With the distance
increased, the d(j) for a path through the newly changed
arc would be 9. This value is still worse than the current
best value of 7, therefore, the shortest path value at node j
does not need to be updated, and no further updates need
to be performed.

(2) Arc Change Improves Shortest-Path

An arc distance decrease can improve the shortest-path
to one or more nodes. This can happen when the changed
arc is either on or off the current shortest-path to the head
node. In either case, the shortest-path distance value of the
node at the head of the changed arc needs to be updated,
and this updated distance value is propagated to successor
nodes.

For example, in Figure 8, arc; reduces in cost from 3 to

=6
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Figure 8 Shortest-Path Improvement

0. With this change, the shortest-path distance to node j
can be decreased from 7 to 6, through node i. The
predecessor pointer should now point to node i, instead of
node g, and the shortest-path value should be updated to 6.
As a final update step, since the successor nodes of node j
can be affected by the improvement to node ;’s shortest-
path distance, node j is added to the algorithm’s update
queue. When the node is subsequently dequeued, the
outgoing arcs from node j are examined for updates.

Cases (1) and (2) are already handled by the FIFO label-
correcting algorithm but case (3) ,below, is not.

(3) Arc Change Invalidates Shortest-Path

In the final case, an increase in arc distance can worsen the
current shortest-path to a node. In this case, the node at
the tail of the arc is the predecessor for the node at the
head of the arc. The set of parent nodes for the changed
arc’s head node must then be re-examined to determine the
new best shortest-path. Additionally, since all nodes
supported by this affected node also have invalid shortest-

Distance graph i i . En

Figure 9 Shortest-Path Invalidated



path distances, a recursive function must be called to
invalidate all nodes supported in the chain. Once these
shortest-path distances have been invalidated, the parents
of the affected node can be enqueued and a new start
distance may be propagated from this node.

For example, in Figure 9, arc; has increased in value,
and since node j’s shortest-path value of 6 was calculated
by traversing through the changed arc, the value at node j
is no longer valid. ITC first invalidates the shortest-path
value for node j and then recursively invalidates the
shortest-path values and predecessor pointers of all nodes
that use node j in their shortest path. Finally, node j’s
parents are added to the Q so that new shortest-path values
and predecessor pointers can be calculated for all of the
invalidated nodes. The predecessor pointer allows ITC to
focus only on updating a small set of relevant nodes,
similar to how the set of support focuses a truth
maintenance system.

This completes the development of the incremental
shortest path algorithm when the STN is consistent. Next
we augment ITC to extract conflicts and reason
incrementally when an inconsistency arises.

Negative Cycle Detection with Conflict Extraction

ITC detects negative cycles in the same manner that the
FIFO label-correcting algorithm detects negative cycles.
Thus, ITC can use any of the methods described
previously for negative cycle detection using label-
correcting algorithms. After ITC detects a negative cycle,
the set of inconsistent edges are collected by following the
predecessor pointers around the cycle. Consider the
inconsistent graph shown in Figure 10. It shows the

p=D

Figure 10 Snapshot of Negative Cycle Just Before Detection

shortest-path values just before a negative cycle is
detected.

Notice that in this graph, the set of edges involved in the
inconsistency cannot be extracted by following the
predecessor pointers. This is because the negative loop
has not yet been closed at arc BA.

Depending on which method is used to detect the
negative cycle, ITC will either continue walking around
the negative cycle until it is eventually detected (-nC
bound), or the cycle will be detected immediately
(spanning tree). Once the cycle is detected, the
predecessor pointers are ensured to be cyclically dependant

so that the source of the conflict can be identified. Figure
11 shows the state of the algorithm a few steps after the
negative cycle has been closed. If using the spanning tree
method to detect negative cycles, ITC would have detected
this negative cycle as soon as it was closed, and if using
the —nC bound to detect negative cycles, ITC would need
to continue walking the cycle until a node value drops
below -40.

As Figure 11 shows, node A’s predecessor pointer now

d=-1
pP=A

d=0
p=none

d=-6
p=D

Figure 11 Snapshot of Negative Cycle After Detection

points to node B, completing the cycle. We can now
extract the conflict by walking the predecessor pointers
and report that this graph was found to be inconsistent with
the negative cycle, ACDBA. Notice that once ITC detects
a negative cycle, any shortest-path distance values
computed for nodes in the negative cycle are meaningless.
This is evident in Figure 11, because negative start times
from the start node are realistically impossible. This
means that before resolving the inconsistency, ITC must
invalidate all nodes in the negative cycle, and must also
invalidate any nodes that depend on the negative cycle for
support. This is accomplished by a «call to
updatel TCwithNegativeCycle.

Incremental Update after Negative Cycle Detection

ITC’s updatelTCwithNegativeCycle takes as input the
negative cycle, and must perform three steps to maintain a
correct set of support: 1) reset every node in the negative
cycle by setting d(n) to oo, and the predecessor pointer to
unknown, 2) reset all nodes that depend on the negative
cycle by calling InvalidateSupports on each node in the

Figure 12 Snapshot after calling updatel TCwithNegativeCycle



negative cycle, and 3) call InsertParents on the set of all
nodes that were reset in steps 1 or 2. This inserts onto the
Q any parent node that has not also been invalidated. For
example, Figure 12, shows the graph after a call to
updatelTCwithNegativeCycle. In this small example, all
shortest-path values but S were reset, however, for a larger
STN, all shortest-path calculations upstream of node S
remain valid, and can be reused without examination.

Next we show how the conflict returned by ITC is used
to incrementally generate a new candidate plan.

Inconsistency Resolution

A planner will take the conflict from the ITC algorithm
and then use it to generate a new candidate plan that does
not contain the conflict. Consider how ITC performs an
incremental update to shift from an inconsistent candidate
plan to a new candidate. For example, imagine that the
planner changes activity CD of a plan so that its upper
bound is increased to /0. This corresponds to an increase
in the distance of CD from 3 to /0. ITC incrementally
updates the graph by calling modifyConstraint on CD.

Notice, in Figure 12, that by calling modifyConstraint,
neither node C or D are added to the Q. This is because
they have both already been invalidated during the
negative cycle update. Nodes C and D are already
guaranteed to be updated as new shortest-path values
propagate through the graph initiating from node S.

Since changing arc CD to /0 greatly increased the path
that was on the negative cycle, this altered graph or new
candidate plan is temporally consistent. As shown in
Figure 13, the ITC algorithm will return this answer after
checkTemporalConsistency has updated and removed all
nodes from the queue.

p=A

Figure 13 ITC Algorithm After Finding a Consistent Solution

Note that a unique feature of ITC is that
modifyConstraint can be called multiple times before
calling checkTemporalConsistency. This is important for
cases when multiple arcs need to be modified in order to
resolve an inconsistency. Also note that multiple and
intertwined negative cycles pose no problem for ITC’s
incremental conflict extraction and inconsistency
resolution framework.

Continuous Planning with ITC

Next we return to how a typical temporally flexible
planner uses ITC to achieve efficiency. The generate and
test loop of a planner using ITC was previously depicted in
Figure 5. The candidate plan generator takes as input a
conflict, supplied by ITC, generates a new candidate plan,
and outputs the STN differences between the successive
candidate plans. ITC then takes these changes to the STN
as input, applies its incremental update rules to modify the
STN, incrementally tests the new STN for temporal
consistency, and outputs a conflict if one is found. The
planning algorithm terminates if an empty conflict is
returned from ITC (signaling that a consistent STN was
found), or if no new modifications are suggested by the
candidate plan generator (signaling that there are no more
candidate plans to try, and planning has failed).

We have implemented and evaluated an instance of a
continuous, temporally flexible planner by incorporating
ITC within the Kirk planner. Kirk can be viewed as a
hierarchical task network planner that supports temporal
flexibility. Kirk supports efficient planning by compiling
its planning domain knowledge into a graphical structure
called a temporal plan network (TPN). A TPN is similar to
a temporally flexible plan, that is, it includes activities,
predecessor and successor relations between activities, and
simple temporal constraints that relate the start and end
times of activities. Additionally, a TPN represents options
or contingencies in a plan by augmenting a temporally
flexible plan with choice nodes. Figure 14 presents a
concise definition of the TPN; the complete definition of a
TPN, which includes mutex and resource support, is
developed in (Kim, Williams, and Abhramson 2001).

TPN:= A[lb,ub] |
( Parallel TPN1,TPN2,...) |
(Sequence TPN1,TPN2,...) |

(Choose TPN1,TPN2,...)

with the graphical equivalents:

Alb,ub] O A Lb,ubl -~
TPN1 __TPN2 __ -

Sequence (TPN1,TPN2, ...) | O——O——0O—0O

Parallel (TPN1, TPN2, ...)

Choose (TPN1,TPN2, ...)

Figure 14 Definition of a Temporal Plan Network (TPN)



In a TPN, a choice between alternative courses of
action is represented by a choice start node, (represented
by a double circle), a choice end node (represented by a
circle with two parallel lines), and alternative subplans
between them. Figure 15 shows an example TPN with a
parallel set of activities branching at node P and
converging at node F. The example TPN also has a choice
between two possible subplans, C1 and C2.

Figure 15 An Example TPN

Roughly speaking, Kirk picks a candidate plan, and its
corresponding STN, by choosing one and only one
execution path thru each of the choice start and choice end
nodes in the TPN. Therefore, a TPN represents a family of
closely related plans, and corresponding STNs, that consist
of all possible permutations of choices that can be made in
the TPN. For example, the TPN in Figure 15 represents
two closely related plans, one corresponding to the plan in
the figure when choice C1 1is selected, and one
corresponding to the plan in the figure when choice C2 is
selected.

To search the TPN efficiently, Kirk compiles the TPN
into a conditional CSP, in which the conditional variables
are the choice nodes. The conditions describe the upstream
relationship between choice nodes, and the constraints are
simple temporal constraints. Conflict-directed candidate
plan generation then corresponds to performing a conflict-
directed search through assignments to the conditional
CSP.

There are several conflict-directed search algorithms in
the literature that are suitable for this task. Three of the
most popular are Conflict-Directed Backjumping (Prosser
1993), Dynamic Backtracking (Ginsberg 1993) and
Conflict-directed A* (Williams and Ragno 2002). For the
purpose of evaluating ITC, we implemented Dynamic
Backtracking within the Kirk planner. Dynamic
Backtracking ensures a complete, systematic, and memory-
bounded search, while leveraging conflicts to only
generate candidate plans that resolve all known conflicts.
In addition, dynamic backtracking performs dynamic
variable reordering in order to preserve assignments, when
possible. See (Ginsberg 1993) for the pseudocode of
Dynamic Backtracking. Our implementation is a
straightforward generalization of Dynamic Backtracking
that is extended to handle conditional variables. After
discussing related work, we consider the effectiveness of
ITC at enabling continuous, temporally flexible planning,
by benchmarking this implementation of Kirk on a range

of structured and unstructured, randomly generated
examples.

Related Work

The ITC algorithm combines the speed of shortest-path
algorithms known to network optimization with the spirit
of incremental algorithms such as Incremental A* and
those used within truth maintenance systems (TMS).

The TPN (Kim, Williams, and Abhramson 2001) is
similar to a DTP (Stergiou and Koubarakis 1998) in that a
TPN allows disjunctive choice between entire subplans,
and the DTP allows disjunctive choice between simple
temporal constraints.

Another disjunctive temporal constraint network, the
CTP, has subsequently been defined by (Tsamardinos et al.
2003) which converts conditional temporal constraint
networks into a CSP, similarly to the way a TPN is
converted into a conditional CSP. However, we note that
solving a conditional CSP directly is often much quicker
than solving its equivalent CSP representation (Gelle and
Sabin 2003). Intuitively, this makes sense because a
conflict-directed search strategy can reason directly on the
conditional CSP’s structure to efficiently prune out
conditional variables.  This is not possible if the
conditional variables are flattened out by converting the
problem into its equivalent CSP representation.

Experimentation

Overview

The Kirk planner was tested on a set of randomly
generated plans, a set of realistic aerial vehicle mission
plans, and also a structured plan instance that illustrates the
advantage of conflict-directed search. Kirk’s planning
speed was compared with three search algorithm
implementations:

1.) Chronological Backtracking without ITC

2.) Chronological Backtracking with ITC

3.) Dynamic Backtracking with ITC

Random TPN Generator

A random TPN generator was developed to test Kirk’s
performance on a wide variety of TPN plans. The random
generator varies over three parameters:

1) branching factor of the parallel and choice nodes (b)

2) max-level of nested parallel and choice nodes (n)

3) number of subTPNs in sequence (s)
Figure 15 shows a typical randomly generated TPN, and
the black arrows represent each parameter that can be
varied to change the dimension of the generated TPN.

Each activity in the TPN was randomly assigned upper
and lower time constraints. The lower time constraint for
each activity was randomly selected from 1 to 6 time units
with a uniform distribution, and the upper time bound was
randomly selected from 5 to 10 time units with a uniform
distribution.
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Figure 15 Randomly generated TPN

Randomly Generated TPN Test Results

For the random TPN test cases, the branching factor(b)
was fixed at 2, the number of nested nodes(n) was fixed at
three, and the number of subTPNs in sequence(s) was
varied from 1 to 10. There were 10 choice nodes per
subTPN, so this corresponds to testing TPNs that
increment by 10 in the number of choice nodes for each
test case.

Ten random TPNs were generated for each data point,
(100 total) and for each case, the number of TPN arc
updates until plan completion was counted.  Plan
completion corresponds to either plan success or plan
failure, depending on the TPN. The results, presented in
Figure 16, shows an order of magnitude improvement in
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Figure 16 Performance Data on Random TPNs

planning speed with ITC vs. without ITC, as the number of
choice nodes in the problem increases. Interestingly,
Dynamic Backtracking with ITC shows no significant

improvement over Chronological BT with ITC for these
random problems. However, random problems do not
offer the structure common in real world instances.

Air Vehicle Scenario Test Results

To evaluate performance on structured problems, a set of
air vehicle test plans were designed specifically to test the
improvement of ITC over the non-incremental planning
algorithm. These plans involved multiple cooperative
aerial vehicles performing a sequence of temporally
consistent activities. In the scenarios, each aerial vehicle is
required to image two locations but has a choice between
two different sets of locations. The planner must choose
one set of locations for each aerial vehicle to image. Once
this choice is made, each unmanned aerial vehicle
performs five activities, (1) fly to targetl, (2) image
targetl, (3) fly to location2, (4) image target2, (5) return
to base. 1In all test cases the activities are temporally
consistent, so conflict-direction would not improve
performance, since there are no conflicts in the plans. The
graph in Figure 17 once again shows an order of
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Figure 17 Runtime of Incremental versus Non-

incremental Temporal Consistency Checks
magnitude improvement in runtime of ITC versus the
traditional FIFO label-correcting algorithm as the number
of activities is increased. These test cases illustrate ITC’s
ability to improve Kirk’s planning speed by an order of
magnitude, and to plan realistic coordinated air vehicle
missions.

Structured Test to Highlight the Advantage of
Dynamic Backtracking with ITC

Recall that the randomly generated test cases in Figure 20
do not indicate a clear advantage for conflict-directed
Biased test to show the advantage of
Dynamic Backtracking

Figure 18 Structured Test to Highlight Dynamic BT with ITC



search, that is, using Dynamic Backtracking with ITC over
Chronological Backtracking with ITC. However, further
experiments show the key result that for many structured
TPNs, such as the one in Figure 22, Dynamic Backtracking
with ITC significantly outperforms Chronological
Backtracking with ITC.

In Figure 18, choices are assigned in order from 1 to N,
(left to right). The first activity for choice 1, has time
bounds of [0,1]. This choice is consistent with the
subsequent choices 2 to N-1, with time bounds of [0,3].
However, there are no choices for node N that are
consistent with the the first assignment to choice 1, which
has the time bounds [0,1]. Therefore, choice 1 and choice
N represent a conflict in the TPN, and the only resolution
is to change choice 1. When trying to resolve this
inconsistency, Chronological Backtracking with ITC
backtracks through half of the entire search space until
choice 1 is changed to the only consistent alternative, with
bounds [2,3]. Dynamic backtracking with ITC, on the
other hand, can immediately utilize ITC’s conflict
extraction capability to determine that the conflicting
choice is 1, and immediately backtrack to this inconsistent
choice. The results are presented in Figure 19.
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Figure 19 Structured Test Results

Discussion

The test results on both randomly generated TPNs and on
realistic aerial vehicle scenarios show that ITC improves
planning speed by an order of magnitude on both randomly
generated TPNs and on realistic aerial vehicle scenarios.
A structured test case is then presented in which the
conflict-directed algorithm, Dynamic Backtracking with
ITC, performs in real-time (<lsec), and both of the
chronological search techniques, Chronological BT and
Chronological BT with ITC, become intractable. This
result suggests that search techniques without conflict-
direction can run across relatively simple TPNs in which
planning is intractable. Dynamic Backtracking with ITC,
however, can counter this intractability by identifying

conflicts and then focusing the search towards feasible
regions of the search space.

The key accomplishment of this paper has been to
demonstrate an order of magnitude speed improvement in
temporally flexible planning through an Incremental
Temporal Consistency (ITC) algorithm with incremental
conflict extraction and inconsistency resolution.
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