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Abstract. can be used for efficiently computing a number of leading solutions
Constraint optimization is at the core of many problems in Ar-to a diagnostic problem.
tificial Intelligence. In this paper, we frame model-based diagnosis The paper is organized as follows. The next section formally de-
as a constraint optimization problem over lattices. We then showines model-based diagnosis as constraint optimization over lattices.
how it can be captured in a framework for “soft” constraints known Section 3 reviews semiring-CSPs. Section 4 frames constraint opti-
as semiring-CSPs. The well-defined mathematical properties of enization over lattices, and in particular diagnosis, as a semiring-CSP,
semiring-CSP allow to devise efficient solution methods that areand defines conditions under which the global objective function
based on decomposing diagnostic problems into trees and applyirgan be folded into the constraints to define preference levels locally.
dynamic programming. We relate the approach to SAB and TREE*Section 5 presents algorithms for solving semiring-CSPs efficiently
two diagnosis algorithms for tree-structured systems, which correbased on tree decompositions and an instance of dynamic program-
spond to special cases of semiring-based constraint optimization. ming. Finally, in Section 6 we show that SAB and TREE*, two diag-
nosis algorithm for tree-structured systems [9, 20], can be understood
1 INTRODUCTION as special instances of semiring-based constraint optimization.

Many problems in Artificial Intelligence can be framed as optimiza-
tion problems where the task is to find a best assignment to a set (% DIAGNOSIS AS CONSTRAINT

variables, such that a set of constraints is satisfied. Formalisms for OPTIMIZATION OVER LATTICES

soft constraints [19, 2] aim at more closely integrating constraint satpefinition 1 (Constraint System) A constraint systeraver{T, L}
isfaction and optimization. Soft constraints extend hard constraintfs a tuple(X, D, F) whereX = {1, ...,z } is a set of variables,
by defining preference levels for the constraints, such that assignp = {Ds,...,D,}isasetof finite domains, and = {f1, ..., fm}
ments are associated with an element from an ordered set. This elgr 5 set of constraints. The constraintsare functions defined over

ment can be interpreted as weight, cost, utility, probability, or pref-yar( f,) where allowed tuples have valie and disallowed tuples
erence. A general framework for soft constraints are semiring-CSPgave valuel .

[2], which are based on a semiring (a set with two operatiprasd

x on it). The semiring operations(and x) model constraint pro- For example, the boolean polycell circuit [21] shown in Fig. 1
jection and combination, respectively. can be framed as a constraint system with variahlés =

In this paper, we show how model-based diagnosis, and in 9enfq. b, c,d,e, f,g,x,y, z,0l,02,03,al,a2}. Variablesa to z are
eral optimization problems composed of a lattice preference struchoolean variables with domaifn, 1}, whereas variablesl to a2
ture and hard Constraints, can be framed as Semiring-CSPS. The %Scribe the mode of a Component and have donﬁrB} If a
proach is based on breaking down a global objective function angomponent is good (denoted G) then it correctly performs its boolean
defining preference levels locally per each constraint. It enhances thygnction. If a component is broken (denoted B) then no assumption is
practical usefulness of semiring-CSPs, and leads to a general framgrade about its behavior. This “unknown mode” captures the concept
work where different notions of model-based diagnosis found in theyf constraint suspension, introduced by Davis [3]. For the moment,
literature (cardinality-minimal diagnosis, subset-minimal diagnosis,ve assume that observations (as stated in Fig. 1) are included in the

probabilistic diagnosis) can be easily obtained by choosing an appraset of constraints. We will come back later to the issue how they can
priate semiring. In the process, we interpret and exploit assumptionge added at run-time.

commonly made in model-based diagnosis as special properties of
the optimization problem behind it.

For classical constraint satisfaction problems (CSPs), local consis-
tency techniques [14] provide the basis for effective solution meth-
ods. The mathematical properties of semiring-constraints ensure that
local consistency is still applicable, except that it has to be organized
as directional consistency in a tree-structured evaluation scheme.
Methods for decomposition of constraint networks [12] can be ex-
tended to turn semiring-CSPs into equivalent, tree-structured in-
stances. Expanding on previous work [6, 7, 13], we present algo-
rithms for solving semiring-CSPs based on tree decompositions and

directional consistency (an instance of dynamic programming) that Figure 1. The Boolean Polycell example consists of three OR gates and
two AND gates. Input and output values are observed as indicated.
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In the following, byt |y we denote the projection of a tuple on a Definition 4 (Constraint System over Semiring) A constraint sys-

subsety” of its variables. Given a constraint systérmand a subset

of the variablesZ C X, asolutionis a tuplet; over the variables
in Z such that there exits an extensiowf ¢z to all the variables

tem over a c-semirings a constraint system where the constraints
f; € F are functions defined over vgf;) assigning to each tuple a
value inA.

X that fuffills the constraints, i.et, |z= t and f;(t lvar(s;)) = _ ) _

T for all f; € F. We denote the set of solutions 6f as so(C). “Classical” constraints [14] correspond to constraint systems over
Optimization extends a constraint system by an objective function téhe semiringS,, where allowed tuples have valieand disallowed
define preference levels on the solutions: tuples have value.

Definition 5 (Combination and Projection) Let f and g be two

Definition 2 (Objective Function) An objective functionU maps constraints defined over véf) and var(g), respectively. Then,

tuples overZ C X to a setA with a partial order< 4 that forms a
complete lattice (i.e., every subset of elemédnts A has a greatest
lower bound gl§7) € A and a least upper bound I¢b) € A).

1. Thecombinationof f and g, denotedf ® g, is a new constraint
overvar(f) U var(g) where each tuple has valuef(t |var(s)

) X g(t lvar(e)):

The projectionof f on a set of variabled’, denotedf |y, is
a new constraint ovefs N var(f) where each tuple has value
f&)+ f(t2)+. ..+ f(tx), wherety, to, . . ., t, are all the tuples
of f for whicht; |y="1t.

In diagnosis, the seZ corresponds to the mode variables. For2,
example, for the boolean polycell in Fig. Z, is the set of vari-
ables{ol, 02, 03, al, a2}. Different notions of diagnosis correspond
to different objective functions and lattices. In cardinality-minimal
diagnosis [11],A is the set of integer values with total ord€r and
U returns for each mode assignment the number fault mode assign- Given a constraint systeiX, D, F) over a c-semiring, the con-
ments. In probabilistic diagnosis [4}, is the interval0, 1] with total ~ Straint optimization problem is to compute a functipoverZ C X
order<, andU associates a probability value with each mode assignsuch thatg(t) is the best value attainable by extendintp X, i.e.
ment. In subset-minimal diagnosis [15, 41,is the lattice of subsets  g(t) = (®j~, f;) {z.
of Z with partial orderC, and each mode assignment is mapped to

the subset of variables that represent a fault mode assignment. Ogre DIAGNOSIS AS SEMIRING-BASED
can think of further instances, for example, associating a repair cost CONSTRAINT OPTIMIZATION
or partially ordered user preferences with each mode assignment.

For the boolean polycell example in Fig. 1, the cardinality- In this section we investigate how optimization over lattices, as de-
minimal diagnoses arel=B, 02=G, 03=G, a1=G, a2=G with value  fined in Sec. 2, and in particular diagnosis, can be framed as a
1 andol=G, 02=G, 03=G, a1=B, a2=G with value 1. If we assume semiring-CSP. Since the mathematical properties of semiring-CSPs
that OR gates have 1% probability of failure and AND gates haveensure that local constraint propagation is applicable, this will be the
.5% probability of failure, then the two leading probabilistic diag- basis for efficient solution methods for these problems.
noses are the same assignments with values .0097 and .0048, respecWe first show that it is possible to “reconstruct” an equivalent
tively. The subset-minimal diagnoses aile=B, 02=G, 03=G, a1=G, semiring-CSP from a constraint system o¥éer, L} and a lattice.
a2=G with value{o1}, 01=G, 02=G, 03=G, a1=B, a2=G with value ~~ We then investigate under which conditions it is possible to break
{al}, andol=G, 02=B, 03=G, a1=G, a2=B with value{o02, a2}. down the global objective function and to define preference levels
locally, i.e., per each constraint, such that the ranking of solutions
is still preserved. This builds on conditions that were defined in [6]
in the context of cost-based optimization in tree-structured CSPs. We

Semiring-CSPs [2] are a framework for “soft” constraints where the'HUStra.te how these con(_jltlons _correspond to assumptions commonly
made in model-based diagnosis.

constraints are extended to include a preference level. Semiring-

CSPs subsume many other notions of preferences in constraints, sUglinition 6 (Composed Objective Function) An objective func-

as fuzzy CSPs [17], probabilistic CSPs [8], or partial constraint satyion 17 is x-composeddf a set of functionsy, ..., ux, if x is a

isfaction [10]. commutative, associative operation dnwith unit element lup4),
absorbing element g(bl), andu; ® ... @ up = U.

3 SEMIRING-CSPS

Definition 3 ([2]) A c-semiringis a tuple(A, +, x, 0, 1) such that

Theorem 1 (Optimization as Semiring-CSP)LetC' = (X, D, F)
be a constraint system ovér, L} andU an objective functiornx-
composed ofi1, . . . , ux. Define a constraint syste(X, D, F') over
A as follows: For eachf; € F, let f; be defined over vdyf;) as
fij(®) =dglb(A) if f;(t) = L and fj(¢) = lub(A), else. LetF" =
flU...UfL,UuiU...Uug. Then(4,lub, x, glb(A),lub(A)) is
a c-semiring, and® """ f/) Iz = U(sol(C)).

1=1

1. Aisasetand, 1 € A4;

2. + is a commutative, associative and idempotent (ies, A im-
pliesa + a = a) operation with unit elemerd and absorbing
element (i.e.,a+0=acanda+1=1;

3. x is acommutative, associative operation with unit elemesntd
absorbing elemert (i.e.,a x 1 = a anda x 0 = 0);

4. x distributes over- (i.e.,a x (b+c¢) = (a X b) + (a X ¢)).
Every objective functiorU is trivially x-composed of itself, by
choosinga x b = glb({a, b}). Together with Theorem 1, this implies

idempotency of the- operation induces a partial ord€l overAas  that every constraint syste@i over { T, L} with objective function

follows: a <g biff a+b =10b (for Sp,0 <g 1).In[2]itisshownthat U can be turned into a semiring-CSP ovkthat has the same set of

(A, <g) forms a lattice. The partial order defines levels of preferencesolutions ag”' and ranks them in the same waylas

and allows to select the “best” solutions for constraints defined over For instance, the objective functidii for subset-minimal diag-

a c-semiring. nosis (Sec. 2) isx-composed of unary functions; defined over

For instance,S, = ({0,1},V,A,0,1) forms a c-semiring. The



2z € Z,wherex = U, u;(t) = 0 if ¢ represents a correct assign-  Probability-Maximal DiagnosisDiagnoses where the preference
ment, andu; (t) = {z} if ¢ represents a faulty assignment. Likewise, criterion is the probability of mode assignments, and the goal is to
the objective functions for cardinality-minimal diagnosis and proba-maximize the probability of a mode assignment, can be obtained by
bilistic diagnosis are<-composed of unary functions where= + choosing the semiring, = ([0, 1], max, -, 0, 1). For probabilistic
and x = -, respectively. For model-based diagnosis, non-trivially diagnosis, the objective function beingdecomposable corresponds
x-composed objective functions correspond to the assumption thdo the assumption that failures are conditionally independent of each
faults or sets of faults occur independently of each other. other.
Together with the results in [2], Theorem 1 establishes a one-
to-one correspondence between lattice preference structures oV§" DECOMPOSITION AND DYNAMIC
“hard” constraints (i.e{T, L} functions) and semiring-CSPs. PROGRAMMING
Up to now, we have two separate types of constraints in the
semiring-CSP: functions that are defined only over variables froniThe mathematical properties of c-semirings (in particular, associa-
the setZ of variables of interest, and bi-valued functions that aretivity and commutativity) guarantee that local constraint propaga-
defined over variables from the s&tof all variables. tion, an efficient technique to solve classical (“hard”) constraints,
works in this extended framework as well. The exception is that the
Definition 7 (Containment) A functionf; € F'iscontainedn f; € x-operation is not necessarily idempotent, which means that con-
F,if var(f;) C var(f;). straint propagation cannot be applied in a “chaotic” way anymore.
Research that aims at extending the notion of local consistency to soft
We can reduce the set of constraints, without changing the solueonstraints [1, 18] has therefore focused on directional consistency,
tions, by “absorbing” functions that are contained in other functions:where constraints are propagated in an organized way following a
hierarchical (tree) scheme.
Theorem 2 (Absorbing Contained Constraints) Let (X, D, F') However, arbitrary constraint networks are not necessarily tree-
be a constraint system over a c-semirifgl, +, x,0,1). Let  structured. The goal of structural decomposition methods [12, 13] is
fi, f; € F be functions such thaf; is contained inf;. Then for the  to turn arbitrary constraint networks into equivalent, tree-structured
constraint systertX, D, F') whereF" = F\ {f;, f;} U (fi® f;),  (acyclic) instances, possibly by aggregating constraints together. De-
(®7, £) bz = QT ) bz composition was developed in the context of hard constraints, but the
idea can be naturally extended to constraint optimization [6]. Struc-
For model-based diagnosis, assuming that faults are indepeRgral decomposition is based on the hypergrapbf a constraint sys-
dent for each individual component means that there exists a gm (X, D, F), which associates a node with each variahles X,

decomposition such that; will be contained in at leastong, and  gpq 3 hyperedge with each constrajfpte F. Figure 2 shows the
consequently, the objective function can be completely “absorbed” i’hypergraph for the boolean polycell circuit.

the constraints representing the components. Note that this does not

exclude cases where a component has more than one mode varialDefinition 8 (Tree Decomposition [12, 13])A tree decomposition
(e.g., sets of mode variables that are temporally indexed for differenfor a constraint systemiX, D, F) is a triple (T, x, \), whereT =
time steps), and it does not exclude cases where the objective fun¢v, ) is a rooted tree, and, A are labeling functions associating
tion associates values with tuples of mode variables (e.g., a probabilith each node € V' two setsy(v) C X and\(v) C F, such that

ity with the transition between two modes). )
1. For eachf; € F, there exists exactly onec V such thatf; €

A(v). For thisw, var(f;) C x(v); (covering condition);
. For eachz; € X, the set{v € V | 2; € x(v)} induces a
connected subtree @f (connectedness condition).

Table 1. Constraintf, in the polycell example (Fig. 1) for semirings. 2
(left), Sp (center) andSs (right). Tuples not shown have val@e

a2g y z a2g y z a2g y z| ) -

G 0 0 00 G 0 0 0 .99 G 00 0 Figure 3 shows a tree decomposition of the boolean polycell.
GO0O 10 GO0 0 1 .99 GO0OO0 10 For a constraint syste@ = (X, D, F'), a tree decompositioff’
G0100 G 0 1 Q.95 GO0 12090 defines an equivalent, tree-structured constraint sy$temD, F”)

g 8 8 2 i S 8 8 2 :882 S 8 8 }ZH that is found by combining the constraints Xv), i.e., F/ =

B o 10 1 B O 1 0 .005 B O 1 Q {al} UveN((X)fjeMv) fj). Note that a unary constraint over a variable
B O 111 B 0O 1 1 .005 B O 1 {al} x; can be added to the tree decomposition, without violating the cov-

ering and connectedness conditions, by adding it as a child of any

We can now summarize different notions of model-based diagnonodev for which z; € x(v). This allows one to perform decompo-
sis, introduced in Sec. 2, as special cases of semiring-based constragition as an off-line step, and to add observations for variables after
optimization. Table 1 shows the resulting constraint (after absorpthe tree has been constructed.
tion) for an AND-gate for each of the three notions of diagnosis. For model-based diagnosis, absorption ofdheonstraints stem-

Cardinality-Minimal Diagnosis Diagnoses where the preference ming from the objective function is complete. This means that the
criterion is the number of faulty components, and the goal is to min-ypergraph will correspond directly to the original device struc-
imize the total number of faulty components, can be obtained byure, which is often organized in a modular way that can be ex-
choosing the semiring. = (N{" U oo, min, +, oo, 0). ploited through structural decomposition. For an arbitrary optimiza-

Subset-Minimal Diagnosi®iagnoses where the preference crite- tion problem, failure to decompose and absorb the objective function
rion is the set of faulty components, and the goal is to minimize themay lead to large constraints that make the problem hard to decom-
set of faulty components with respect to set inclusion, can be obpose, i.e., lead to a tree node with a large number of variables.
tained by choosing the semiritfy = (27,0, U, Z, 0). The operator Decomposition can be understood as a minimal “repair” to
N induces an ordering am b € 27 as follows:a <s biff a D b. the constraint system such that directional consistency techniques



fa2 fo2 function solveg(v, b)
for each¢; € children(v)
solve(child)
F) = (f(0) @ f(e2) varron) [
if ¢(v) = 0then
throw inconsistent()
end if
end for

Figure 2. Hypergraph for the example in Fig. 1.

Figure 4. Bottom-up phase for solving a tree-structured semiring-CSP
through dynamic programming

{037 (117 G, €, f7 z,y, Z} {f037 fal} Vo

<s b. This exploits the property that in a c-semiring, theoperator
is extensive [2], i.e.(a x b) <g aforalla,b € A.
{a2,9,y, 2} {faz} | v | {ol,a,¢, 2} {for} Values for solutions can be found by calling solve(£@), where
root(T") is the root node of". After completion of the algorithm, the
best value of the tuples ifi(root(7")) is the value of the optimal
{02,0,d,y} {for} | v2 solution. If< is only a partial order, then the best value of the tuples
in f(root(T)) is a lub for the value of the optimal solution. The
problem has no consistent solution if and only if there is a noate
the tree for whichf (v) = 0.

Table 2 shows the resulting root node constraint for probabilistic

(dynamic programming) become applicable. Solutions to a treedi2gnosis of the boolean polycell example (i.e., using semifify

structured semiring-CSP can be computed search-free using twd'd Parameteb=5.0E-5 that limits computation to single faults of
steps. The first step computes values for tuples bottom-up using #i\D-gates and OR-gates and double faults of OR-gates.
instance of dynamic programming. This step can be viewed as gener-

ating an exact heuristic for search. In a second, top-down step, these Table 2. Constraintf(vo) for the polycell example (Fig. 1) after the
values are used to enumerate solutions. This step can be viewed as pttom-up phase, using semirisg and the tree decomposition in Fig. 3.
search that is guided by an exact heuristic, and is therefore backtrack- Tuples not shown have val@e

free.

Figure 3. A tree decomposition of the hypergraph in Fig. 2, showing the
labelsx and\ for each node.

. . N - 03 al ¢ e f x y z|
Previous work on constraint optimization based on decomposition G G 1 0 0 0 1 1 9.7E3
and dynamic programming [6, 7, 13] has focussed on the task of G B 1 0 0 1 1 1| 48E-3
B G 1 0 0 O 1 1| 98E5

computing best values for individual variables or a single best as-
signment to all variables. We extend this work to address important
requirements of the diagnosis context. First, in diagnosis it is typical The time complexity of the bottom-up phase is exponential in the
that only a limited number of leading solutions is required. For in-maximum number of variables in a tree node (called the tree width),
stance, if the values of the solutions correspond to probabilities, thand its space complexity is exponential in the maximal number of
task could be to find a set of most likely solutions that cover most ofvariables that are shared between two tree nodes (called the sepa-
the probability density space. We deliver on this requirement by exrator size) [7, 13]. Hence, the benefit of tree decomposition is that it
ploiting a monotonicity property of c-semirings in the bottom-up and breaks down the complexity from being exponential in the number of
top-down phase to cut off the search space. Second, in diagnosis it&l variables to being exponential in the number of variables per tree
typical that most of the variables are not mode variables, and it woulélement (node or edge). Note that the complexity does not depend on
therefore be infeasible to enumerate solutions to the constraints théte semiring, which means that the extension from constraint satis-
differ only in the values for variableX \ Z. Our approach avoids this faction (hard constraints) to constraint optimization (soft constraints)
by systematically eliminating these variables during the top-downdoes not increase the complexity of constraint solving.
phase. The pseudocode for the top-down solution enumeration phase is
The pseudocode for the bottom-up dynamic programming phasshown in Fig. 5. It enumerates the solutions with valug s b. For
is shown in Fig. 4. In Fig. 4, function childrénreturns the set of instance, in cardinality-minimal diagnosis (semirifig), one might
children of a nodef (v) is the constraint for node. The operation  perform the bottom-up phase with a limitation to single and double
f(v) ® f(c) Yvar(s(v)), @lso known as semi-join, is the step that faults ¢=2), and, if it turns out that single faults exist, enumerate only
establishes directional consistency between a node and its parent.ite single faults{=1) in the top-down phase. It is easy to modify the
is a generalization of directional arc consistency for CSPs [14] to theop-down algorithm in such a way that, for example, the total num-
case of soft constraints [1, 18]. ber of enumerated solutions is restricted. In Fig. 5, preorder-node-
The restriction operatdf. “prunes” tuples of a constraint by set- iterator() enumerates the nodes of the t#féén pre-order (for the
ting their value to0 if it is worse thanb. Formally, f; |% returns a  tree in Fig. 3, for example, in ordes, v1, v2, vs). Constraint- con-
function f; wheref;(t) = f;(t) if f;(t) <s b, andf(t) = 0, else.  tains the resulting solutions. If the operatoiis not idempotent, the
If the bottom-up algorithm is provided with a cut-off parametghe bottom-up propagation has to be “canceled” by a semijoin operation
restriction operator limits the computation to tuples whose value isf; @' f Uvars(s;) USINg the inversex —1) of the operatorx. As
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function extractT, b) 6 SAB AND TREE*

v « preorder-node-iterator-first’) ) . .
m 0 SAB [5, 9] and TREE* [20] are two diagnostic algorithms for tree-

re f(o) |2 structured systems.

- SAB is a dynamic programming algorithm based on “weighting”
assignments to mode variables. A correct assignment has weight 0,
whereas an abnormal (faulty) assignment has weight 1. The goal is
then to minimize the total sum of the weights. This corresponds to
the semiringS.. The assumption that mode variables are not shared
between constraints is built into the weighting scheme; SAB would

if (v = nil) then lead to incorrect results if applied to diagnostic models that violate

return = this assumption. SAB has been combined with tree decomposition.
end if However, SAB only extracts a single best solution, and it does not use
if not (x idempotentthen a restriction operator_. In[9], it h_as beelj showr_u that SAB compares

rere-l f(v) Yy favorably to the conflict-based diagnostic algorithm GDE [4].

end if Like SAB, TREE* computes cardinality-minimal diagnoses.

re(ref)ls TREE* is based on the idea that the set of consistent assignments

m « m\(x(parent(v)) N x(v)) to Z_ls sometimes srr_lal_l enough tq associate it directly Wlth each tu-
end loop ple, instead of associating a lub with each tuple that guides the enu-

meration of these assignments in a separate top-down phase. That s,
TREE* collapses the bottom-up and the top-down phase into a single
phase.

The set of assignments is concise because a cut-off is used and
because mode assignments are compactly represented as subsets of
Z. In TREE?*, the variablesZ (mode variables) are not included
in the constraint system. Instead, mode assignments are associated
with tuples of the constraints. Mode assignments combine through
the operatorJ. Since sets of mode assignments are considered, the
values of tuples combine through the cartesian proddck B =
daUb|ac Abe B} TREE* uses a cut-off to restrict the car-
dinality of the sets and thus the cardinality of the diagnoses. Since
there is no separate solution enumeration phase, solutions are found
é)gfcombining the values of tuples in the root of the tree (i.e., a special
root node withy = () is used).

TREE* treats the constraints and the values for their tuples sep-
rately, i.e., it performs semi-joins on bi-valued constraints, and up-
ates the values of the tuples in a subsequent step. However, note that
updating the values can become exponentid iaven if the task is
only to find a single best diagnosis. Efficient data-structures, such as

loop eliminates variablesand f from r. Assumev; is the next node algebraic decision diagrams (ADDs) [16], exist for constraints (func-

of T"in pre-order. Since operaticnis notidempotent fof,, a semi- _tlons) over c-semirings whetd is a subset of the real numb_er_s (as
ey is the case fol5. and.S,). For larger constraints and larg#, it is

join is performed between and f,2 using the operatioxx =" = +, -
) P Ja2 9 P therefore more efficient to separate the bottom-up and the top-down

followed by a combination (full join) of the two constraints. Restric- h Also. this all ¢ ina two diff t cut-off ot
tion |% removes 3 of the 6 tuples since their values fall below 5.0E-5P1ases. IS0, this allows Tor using two ditierent Cut-off paramelers

The loop is repeated aften is updated to{c, , y}. Table 3 shows which permits better control over the number of diagnoses generated.
the final solutions e TREE* has been combined with a decomposition method for

hard constraints called hypertree decomposition [12]. For hard con-
straints, hypertree decomposition is a more powerful decomposi-
Table 3. Solutions for the polycell example (Fig. 1) as enumerated by the tion method because unlike tree decomposition, it allows for re-

begin loop
for each¢; € children(v)
m —mU (x(v) Nx(ei))
end for
rerT ‘U’(var('r)r‘]m)uz
v « preorder-node-iterator-net)

Figure 5. Top-down phase for enumerating solutions to a tree-structured
semiring-CSP for whichx is idempotent or has an inverse.

solutions consist only of assignments to the varialifes. X, all
other variablesX \ Z must be eliminated from the result. A vari-
able inX \ Z can only be eliminated once it no longer occurs in the
remaining (unprocessed) part of the tree. In the algorithm shown i
Fig. 5, the variables shared betweeland the unprocessed part of
the tree are represented by a multi-sefm is a multi-set rather than

a set because the same variable can occur on more than one edg
the tree).

Consider again the boolean polycell example for the semising
continuing on the example above. Assume that solution enumeratiog
is performed withh = 5.0E-5. Initially,v is vo, andr is the constraint
shown in Table 2. Node, has three children, and after the for-loop,
multi-setm is {c, z,y, y, z}. The projection operation after the for-

top-down phase. using constraints in different nodes of the tree. However, in the con-
text of soft constraints, this advantage diminishes because multi-
ol 02 03 al a2 . . .
B G G G G 97E3 ple occurrences of the same constrglnt .clash with the possible non-
G G G B G| 48E-3 idempotency of the constraint combination operator [13]. In [20] it
B G B G G| 98E5 has been empirically shown that TREE* can outperform SAB, an
B B G G G|98ES effect that can be mainly attributed to the use of a cut-off in TREE*.

The complexity of the top-down phase is worst-case exponential iy CONCLUSION
the number of type variables. The solution enumeration algorithm
as stated in Fig. 5 requires that theoperator of the semiring is  This work builds on recent research in constraint programming and
idempotent or has an inverse. This is the case for all three semiringsptimization, extending and modifying it for the context of model-
Se, Ss, andsS,,. based diagnosis.



Semiring-CSPs [2] are based on local preferences (defined pef6]
each constraint), whereas diagnosis is based on global preferences
(defined per each solution). We therefore “reversed” the view in [2], 7]
starting from lattices over hard constraints, and investigated ways to
fold them into a constraint system. This leads to methods and algo{s]
rithms that allow to perform diagnosis over the general class of lattice
preference structures. In contrast, existing diagnosis algorithms suc
as SAB and TREE* require that preferences are mutually indepen- ]
dent for individual variables; in the terminology of our framework, [10]
the objective function must be-composed of unary functions. This
is not required in our framework, although it can still be exploited:
if the objective function isx-composed of small (unary) functions,
this will lead to better (complete) absorbtion of contained constraintsFlz]
(Theorem 2), and therefore to a smaller constraint system. Objective
functions that are nok-composed of unary functions occur in prac-
tice if probabilities are associated with mode transitions (it would bd13l
possible to introduce an extra variable for the mode transition, but at
the cost of increasing the size of the constraint system). [14]

Our work establishes a firm relationship between diagnosis as con-
straint satisfaction over lattices, semiring-based constraint optimiza-
tion, and constraint propagation (dynamic programming) algorithms[.15
This can lead to new and interesting insights. Consider, for examkalG]
the diagnostic task of maximizing the number of correctly working
components instead of minimizing the number of faulty components.
This problem might seem similar to cardinality-minimal diagnosis.[l7]
However, unlike cardinality-minimal diagnosis, it does not form a c-
semiring (the unit element of maximization, 0, is not the absorbingz1g]
element of summation). Theorem 1 implies that it does not corre-
spond to a lattice preference structure, and because semiring-CSPél
capture necessary conditions for constraint propagation to work, it
also follows that dynamic programming algorithms of the type pre{20]
sented in Section 5 do not exist for this diagnostic problem.

The algorithms presented in this paper have been implemented ug1]
ing a (modified) version of algebraic decision diagrams (ADDs) [16]
to represent semiring-constraints. We are currently experimenting
with random examples and real-world applications from the space-
craft domain. Current and future work includes incorporating Al and
database techniques (such as best-first search and pipelining) in order
to perform the constraint operations in an intelligent way, in particu-
lar processing large constraints only partially and caching intermedi-
ate results for incremental propagation.

[11]
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